Article

Analyzing the Vulnerability of Residential Buildings in the City of Chaitén: A Focus on an Extreme Event Scenario in a Disrupted River Corridor Following the Cataclysmic Volcanic Eruption of 2008

Downloads

Bertín Salazar, C., Mazzorana, B., Bahamondes Rosas, D. P., Duran Vilches, G., & Iribarren Anacona, P. (2024). Analyzing the Vulnerability of Residential Buildings in the City of Chaitén: A Focus on an Extreme Event Scenario in a Disrupted River Corridor Following the Cataclysmic Volcanic Eruption of 2008. Prevention and Treatment of Natural Disasters, 3(1). https://doi.org/10.54963/ptnd.v3i1.228

Authors

  • Carolina Bertín Salazar 1. Laboratorio de Procesos Superficiales, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; 2. Escuela de Geografía, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
  • Bruno Mazzorana
    1. Laboratorio de Procesos Superficiales, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; 2. Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
  • Diego Patricio Bahamondes Rosas Laboratorio de Procesos Superficiales, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
  • Gonzalo Duran Vilches Laboratorio de Geoinformatica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
  • Pablo Iribarren Anacona 1. Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; 2. Laboratorio de Geoinformatica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile

Pillared on the hydrodynamic simulation of an extreme flooding scenario, we subsequently evaluated the physical vulnerability of residential buildings utilizing an ad hoc developed indicator-based methodology. This method aimed to quantify the expected loss for each affected residential structure. The outcome of this assessment facilitated the creation of a detailed risk map, allowing for the identification of hotspots that require immediate prioritization in mitigation efforts. The results of our study revealed a concentrated impact of the flood, particularly in the northern sector of the city. Within this region, four high-risk areas were pinpointed, comprising 70 homes predominantly situated close to the active channel zones. Notably, our findings underscored that twelve residential buildings, located at shorter distances from the river, are particularly susceptible to the impacts of the flood, as indicated by the physical vulnerability index values. It is important to highlight that the developed methodology is specifically tailored for the analysis of lightweight, one or two-storey houses with exteriors constructed from wood and zinc plates, as opposed to structures built with concrete or stone masonry. This distinction is crucial, given the prevalence of such building types in the Chilean Patagonian region. We recommend extending the application of this methodology to other urban areas in the region, where analogous impacts are possible and similar architectural patterns are common.

Keywords:

vulnerability hydrodynamic impact indicator-based methodology specific risk

Author Biographies

Laboratorio de Procesos Superficiales, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Los Ríos Region 5090000/Valdivia, Chile

Laboratorio de Geoinformatica, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Los Ríos Region 5090000/Valdivia, Chile

Laboratorio de Procesos Superficiales, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Los Ríos Region 5090000/Valdivia, Chile

Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Los Ríos Region 5090000/Valdivia, Chile

References

  1. Sturm, M.; Gems, B.; Keller, F.; Mazzorana, B.; Fuchs, S.; Papathoma Köhle, M; Aufleger, M. Experimental Analyses of Impact Forces on Buildings Exposed to Fluvial Hazards. J. Hydrology 2018, 565, 1–13.
  2. Korswagen, P.; Longo, M.; Rots, J. Fragility Curves for Light Damage of Clay Masonry Walls Subjected to Seismic Vibrations. Bull. Earthq. Eng. 2022, 20, 1–35.
  3. Mazzoleni, M.; Mård, J.; Rusca, M.; Odongo, V.; Lindersson, S.; Di Baldassarre, G. Floodplains in the Anthropocene: A Global Analysis of the Interplay Between Human Population, Built Environment, and Flood Severity. W. Resources Res. 2021, 57, e2020WR027744.
  4. Lavigne, F.; Jean-Claude, T. Sediment Transportation and Deposition by Rain-Triggered Lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 2003, 49, 45–69.
  5. Zingaretti, V.; Iroumé, A.; Llena, M.; Mazzorana, B.; Vericat, D.; Batalla, R.J. Geomorphological Evolution of the Blanco Este River after Recent Eruptions of the Calbuco Volcano. Geomorphology 2023, 425, 108570.
  6. Lavigne, F. Lahar Hazard Micro-Zonation and Risk Assessment in Yogyakarta city, Indonesia. GeoJournal 1999, 49, 173–183.
  7. Thouret, J.C.; Taillandier, M.; Arapa, E.; Wavelet, E. Vulnerable Settlements to Debris Flows in Arequipa, Peru: Population Characteristics, Hazard Knowledge, Risk Perception, and Disaster Risk Management. Nat. Hazards 2024, 120, 901–955.
  8. Una revisión de inundaciones fluviales en Chile período 1574–2012: causas, recurrencia y efectos geográficos. Available online: https://www.scielo.cl/scielo.php?pid=S0718-34022014000100012&script=sci_arttext (accessed on 01 October 2023).
  9. Desastres por inundaciones fluviales en un área de expansión urbana: curso inferior de la cuenca del río Andalién-Chile central (1943–2011). Available online: https://www.researchgate.net/profile/Octavio-Rojas/publication/303804450_ Desastres_por_inundaciones_fluviales_en_un_area_de_expansion_urbana_curso_inferior_de_la_cuenca_del_rio_Andalien_ Chile-Central_1943-2011/links/57536a4c08ae17e65ec6cc99/Desastres-por-inundaciones-fluviales-en-un-area-de- expansion-urbana-curso-inferior-de-la-cuenca-del-rio-Andalien-Chile-Central-1943-2011.pdf (accessed on 15 April 2023).
  10. Viale, M.; Valenzuela, R.; Garreaud, R.D.; Ralph, F.M. Impacts of Atmospheric Rivers on Precipitation in Southern South America. J. Hydrometeorology 2018, 19, 1671–1687.
  11. Pallister, J.; Diefenbach, A.; Burton, W.; Muñoz, J.; Griswold, J.; Lara, L.; Lowenstern, J.; Valenzuela, C. The Chaitén rhyolite lava dome: Eruption Sequence, Lava dome volumes, Rapid Effusion Rates and Source of the Rhyolite Magma. Andean Geol. 2013, 40, 277–294.
  12. Ulloa, H.; Iroumé, A.; Picco, L.; Korup, O.; Aristide, M.; Mao, L.; Ravazzolo, D. Massive Biomass Flushing Despite Modest Channel Response in the Rayas River Following the 2008 Eruption of Chaitén volcano, Chile. Geomorphology 2015, 250, 397–406.
  13. Mazzorana, B.; Picco, L.; Rainato, R.; Iroumé, A.; Ruiz-Villanueva, V.; Rojas, C.; Valdevenito, G.; Iribarren-Anacona, P.; Melnick, D. Cascading Processes in a Changing Environment: Disturbances on Aluvial Ecosystems in Chile and Implications for Hazard and Risk Management. Sci. Total Environ. 2019, 655, 1089–1103.
  14. Mazzorana, B.; Levaggi, L.; Keiler, M.; Fuchs, S. Towards Dynamics in Flood Risk Assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 3571–3587.
  15. Manual para la elaboración de mapas de riesgo. Available online: https://www.mininterior.gov.ar/planificacion/pdf/Manual-elaboracion-mapas-riesgo.pdf (accessed on 20 November 2022).
  16. Jonkman, S.N.; van Gelder, P.H.A.J.M.; Vrijling, J. A Overview of Quantitative Risk Measures for Loss of Life and Economic Damage. J. Hazard. Mater. 2003, 99, 1–30.
  17. Riesgos naturales: evolución y modelos conceptuales. Available online: http://www.scielo.org.ar/scielo.php?pid=S1852-42652011000100005&script=sci_arttext (accessed on 17 August 2023).
  18. Fuchs, S. Susceptibility Versus Resilience to Mountain Hazards in Austria—Paradigms of Vulnerability Revisited. Nat. Hazards Earth Syst. Sci. 2009, 9, 337–352.
  19. Mazzorana, B.; Fuchs, S. Fuzzy Formative Scenario Analysis for Woody Material Transport Related Risks in Mountain Torrents. Environmental Modelling Softw. 2010, 25, 1208–1224.
  20. Estudio del Impacto Territorial-Ambiental Generado por la Erupción del Volcán Chaitén. Tesis de Pregrado. Available online: https://repositorio.uchile.cl/handle/2250/100349 (accessed on 20 December 2023).
  21. Estimación holística del riesgo sísmico utilizando sistemas dinámicos complejos. Available online: https://upcommons.upc.edu/handle/2117/93531 (accessed on 7 July 2024).
  22. Mazzorana, B.; Simoni, S.; Scherer, B.; Gems, B.; Fuchs, S.; Keiler, M. A Physical Approach on Flood Risk Vulnerability of Buildings. Hydrol. Earth Syst. Sci. 2014, 18, 3817–3836.
  23. Lara, L. The 2008 Eruption of the Chaitén Volcano, Chile: A Preliminary Report. Andean Geol. 2009, 36, 125–130.
  24. Major, J.; Lara, L. Overview of Chaitén Volcano, Chile, and Its 2008–2009 Eruption. Andean Geol. 2013, 40, 196–215.
  25. Major, J. J.; Bertin, B.; Pierson, T.C.; Amigo, A.; Iroumé, A.; Ulloa, H.; Castro, J. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile. Water. Resour. Res. 2016, 52, 5075–5094.
  26. Pierson, T.C.; Major, J.J.; Amigo, A.; Moreno, H. Acute Sedimentation Response to Rainfall Following the Explosive Phase of the 2008–2009 Eruption of Chaitén volcano, Chile. Bull. Volcanology 2013, 75, 1–17.
  27. Swanson, F.J.; Jones, J.A.; Crisafulli, C.; Lara, A., 2013. Effects of Volcanic and Hydrologic Processes on Forest Vegetation, Chaitén Volcano, Chile. Andean Geol. 2013, 40, 359–391.
  28. Ruiz-Villanueva, V.; Mazzorana, B.; Bahamondes, D., Rojas, I. Cascading Processes and Multiple Hazards and Risks in Chilean Rivers: Lessons Learnt and Remaining Challenges. In Rivers of Southern and Patagonia; Oyarzún, C., Mazzorana, B., Iribarren-Anacona, P., Iroumé, A. Eds.; Springer Cham: Gewerbestrasse, Switzerland, 2023; pp. 235–250.
  29. Basso-Báez, S.; Mazzorana, B.; Ulloa, H.; Bahamondes, D.; Ruiz-Villanueva, V.; Sanhueza, D.; Iroumé, A.; Picco, L. Unravelling the Impacts to the Built Environment Caused by Floods in a River Heavily Perturbed by Volcanic Eruptions. J. South Am. Earth Sci. 2020, 102, 102655.
  30. Gefährdungs-und Schadensbilder für Gebäude. Available online: https://link.springer.com/chapter/10.1007/978-3-7091-0681-5_3 (accessed on 24 March 2023).
  31. Papathoma-Köhle, M.; Gems, B.; Sturm, M.; Fuchs, S. Matrices, Curves and Indicators: A Review of Approaches to Assess Physical Vulnerability to Debris Flows. Earth-Sci. Rev. 2017, 171, 272–288.
  32. Centro de Información de Recursos Naturales. Avaible Online: https://www.sitrural.cl/wp content/uploads/2020/03/Chaiten_rec_nat_proy.pdf (accessed on 7 December 2017).
  33. Martini, L.; Picco, L.; Iroumé, A.; Cavalli, M. Sediment Connectivity Changes in an Andean Catchment Affected by Volcanic Eruption. Sci. Total Environ. 2019, 692, 1209–1222.
  34. Estrategia para la inferencia causal y planificación de estudios observacionales en las ciencias sociales: el caso de Chaitén post erupción del 2008. Available online: https://www.scielo.cl/scielo.php?pid=S0718-090X2016000300010&script=sci_arttext (accessed on 17 July 2023).
  35. Atanasova-Pachemska, T.; Lapevski M.; Timovski, R. Analytical Hierarchical Process (AHP) Method Application in the Process of Selection and Evaluation. In Proceedings of the International Scientific Conference, Gabrovo, Bulgaria, 22 November 2014.
  36. Ibrahim, A.; Tiki, D.; Mamdem, L.; Leumbre, O.; Bitom, D.; Lazar, G. MultiCriteria Analysis (MCA) Approach and GIS for Flood Risk Assessment and Mapping in Mayo Kani Division, Far North Region of Cameroon. International J. Advanced Remote. Sensn. GIS. 2018, 7, 2793–2808.
  37. Goepel, K. Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises—A New AHP Excel Template with Multiple Inputs. In Proceedings the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, Malaysia, 23–36 June 2013.
  38. Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile). Available online: https://iwaponline.com/IA/article/27/2/73/95547 (accessed on 15 August 2023).
  39. Graham, D.; Rice, S.; Reid, I. A Transferable Method for the Automated Grain Sizing of River Gravels. Water Resour. Res. 2005, 41.
  40. Detert, M.; Weitbrecht, V. User Guide to Gravelometric Image Analysis by BASEGRAIN. Adv. Sci. Res. 2013, 1789–1795.
  41. Chow, V. Open-Channel Hydraulics. McGraw-Hill: New York, USA, 1959; pp. 89–148.
  42. Iber: herramienta de simulación numérica del flujo en ríos. Available online: https://www.sciencedirect.com/science/article/pii/S0213131512000454 (accessed on 12 January 2024).
  43. Análisis de riesgo específico de inundación de la ciudad de Chaitén, bajo un escenario de crecida extrema del río Blanco, post erupción. Available online: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-22442015000300003 (accessed on 15 March 2024).
  44. Mazzorana, B.; Maturana, F. Mitigating Complex Flood Risks in Southern Chile in a Particular Spatial Planning Context: Towards a Sustainable Strategy. In Rivers of Southern and Patagonia; Oyarzún, C., Mazzorana, B., Iribarren-Anacona, P., Iroumé, A. eds; Springer Cham: Gewerbestrasse, Switzerland, 2023; pp. 193–233.
  45. Papathoma-Köhle, M.; Schlögl, M.; Fuchs, S. Vulnerability Indicators for Natural Hazards: An Innovative Selection and Weighting Approach. Sci. Rep. 2019, 9, 15026.