HVSR Survey Along the Wasatch Fault (Provo Segment)

Prevention and Treatment of Natural Disasters

Article

HVSR Survey Along the Wasatch Fault (Provo Segment)

Smith, K. J., McBride, J., Nelson, S. T., Harris, R. A., Rey, K. A., & Worthen, B. (2025). HVSR Survey Along the Wasatch Fault (Provo Segment). Prevention and Treatment of Natural Disasters, 4(2), 31–46. https://doi.org/10.54963/ptnd.v4i2.1608

Authors

  • Kathryn J. Smith

    Coastal and Hydraulics Laboratory, U.S. Army Corps of Engineers Engineer Research and Development Center, Vicksburg, MS 39180, USA
  • John McBride

    Department of Geological Sciences, Brigham Young University, Provo, UT 84602, USA
  • Stephen T. Nelson

    Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
  • Ronald A. Harris

    Department of Geological Sciences, Brigham Young University, Provo, UT 84602, USA
  • Kevin A. Rey

    Department of Geological Sciences, Brigham Young University, Provo, UT 84602, USA
  • Bo Worthen

    Department of Geological Sciences, Brigham Young University, Provo, UT 84602, USA

Received: 13 September 2025; Revised: 27 October 2025; Accepted: 27 October 2025; Published: 14 November 2025

The Wasatch Fault Corridor in northern Utah (USA) faces increasing seismic risks due to rising population density. Vs30 is a vital parameter for understanding how a site will respond to earthquake shaking; however, obtaining Vs30 can be costly or impractical because of infrastructure or access challenges. The horizontal-to-vertical spectral ratio (HVSR) enables rapid assessment, provided a relationship between Vs30 and the resonant frequency (f0) of the shallow subsurface can be established. Previously surveyed Vs30 sites in the Provo segment of the Wasatch Fault Zone were measured with a three-component seismometer to obtain f0. These sites are located on the hanging wall of the fault zone, within alluvial and lacustrine Quaternary sediments. For each of the 20 sites, ambient noise was recorded for 30 minutes and amplitude-frequency spectra computed for each component. A rubric was applied to select site results most suitable for analysis and forward modelling, based on uncertainty of f0, uncertainty of H/V response, and peak quality. The H/V response was then derived for 15 selected sites. The strongest low-frequency peak identified the f0, which ranged from 0.28 to 1.38 Hz. Experimenting with linear regression helps guide understanding of the potential for estimating Vs30 from HVSR in this region. 

Keywords:

Ambient Noise Seismic Hazard Spectral Analysis Vs30 Quaternary

References

  1. Working Group on Utah Earthquake Probabilities (WGUEP). Earthquake probabilities for the Wasatch Front region in Utah, Idaho, and Wyoming; Utah Geological Survey: Salt Lake City, UT, USA, 2016; pp. 3–21.
  2. Smith, R.B.; Arabasz, W.J. Seismicity of the Intermountain Seismic Belt. In Neotectonics of North America; Slemmons, D.B., Engdahl, E.R., Zoback, M.D., et al., Eds.; Geological Society of America: Denver, CO, USA, 1991; pp. 185–228.
  3. Machette, M.N.; Personius, S.F.; Nelson, A.R. The Wasatch fault zone, Utah—segmentation and history of Holocene earthquakes. J. Struct. Geol. 1991, 13, 137–149. DOI: https://doi.org/10.1016/0191-8141(91)90062-N
  4. McCalpin, J.P. Application of paleoseismic data to seismic hazard assessment and neotectonic research. Internat. Geophys. 1996, 62, 439–493. DOI: https://doi.org/10.1016/S0074-6142(96)80076-3
  5. McCalpin, J.P.; Nishenko, S.P. Holocene paleoseismicity, temporal clustering, and probabilities of future large (M > 7) earthquakes on the Wasatch fault zone, Utah. J. Geophys. Res. 1996, 101, 6233–6253. DOI: https://doi.org/10.1029/95JB02851
  6. Utah Geological Survey. The Wasatch Fault. Public Information Series 40; Utah Geological Survey: Salt Lake City, UT, USA, 1996; pp. 3–15.
  7. Toké, N.A.; Phillips, J.; Langevin, C.; et al. The Traverse Ridge Paleoseismic Site and Ruptures Crossing the Boundary Between the Provo and Salt Lake City Segments of the Wasatch Fault Zone, Utah, United States. Front. Earth Sci. 2021, 9, 607018. DOI: https://doi.org/10.3389/feart.2021.607018
  8. U.S. Geological Survey; Utah Geological Survey. Quaternary fault and fold database for the United States. Available online: https://www.usgs.gov/natural-hazards/earthquake-hazards/faults (accessed on 4 July 2025).
  9. NASA Shuttle Radar Topography Mission (SRTM). Shuttle Radar Topography Mission (SRTM) Global. Available online: https://doi.org/10.5069/G9445JDF (accessed on 25 August 2025).
  10. Hassani, B.; Atkinson, G.M. Applicability of the Site Fundamental Frequency as a VS30 Proxy for Central and Eastern North America. Bull. Seismol. Soc. Am. 2016, 106, 653–664. DOI: https://doi.org/10.1785/0120150259
  11. McDonald, G.N.; Ashland, F.X. Earthquake site conditions in the Wasatch Front urban corridor, Utah. Available online: https://ugspub.nr.utah.gov/publications/special_studies/ss-125.pdf (accessed on 4 July 2025).
  12. Bay, J.A. Shallow shear wave velocity profiling of poorly characterized earthquake site-response units in urban Utah, Davis, and Weber Counties, Utah. Available online: https://earthquake.usgs.gov/cfusion/external_grants/reports/05HQGR0088.pdf (accessed on 4 July 2025).
  13. Stephenson, W.J.; Williams, R.A.; Odum, J.K.; et al. Miscellaneous high-resolution seismic imaging investigations in Salt Lake and Utah Valleys for earthquake hazards. In USGS Open-File Rep 2007–1152; Geological Survey (U.S.): Reston, VA, USA, 2007. DOI: https://doi.org/10.3133/ofr20071152
  14. Nelson, S.T.; McBride, J. Seismic mapping of shallow bedrock shelves in the hanging wall of the Wasatch fault. J. Appl. Geophys. 2023, 210, 1–14. DOI: https://doi.org/10.1016/j.jappgeo.2022.104923
  15. Thornley, J.D.; Dutta, U.; Douglas, J.; et al. Evaluation of horizontal to vertical spectral ratio and standard spectral ratio methods for mapping shear wave velocity across Anchorage, Alaska. Soil Dyn. Earthq. Eng. 2021, 150, 106918. DOI: https://doi.org/10.1016/j.soildyn.2021.106918
  16. McNamara, D.E.; Stephenson, W.J.; Odum, J.K.; et al. Site response in the eastern United States: A comparison of Vs30 measurements with estimates from horizontal:vertical spectral ratios. In The 2011 Mineral, Virginia, Earthquake, and Its Significance for Seismic Hazards in Eastern North America; Horton Jr., J.W., Chapman, M.C., Green, R.A., Eds.; Geological Society of America: Denver, CO, USA, 2015; pp. 67–79. DOI: https://doi.org/10.1130/2015.2509(04)
  17. Stephenson, W.J.; Odum, J.K.; McNamara, D.E.; et al. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia, earthquake. In The 2011 Mineral, Virginia, Earthquake, and Its Significance for Seismic Hazards in Eastern North America; Horton Jr., J.W., Chapman, M.C., Green, R.A., Eds.; Geological Society of America: Denver, CO, USA, 2015; pp. 47–65. DOI: https://doi.org/10.1130/2015.2509(03)
  18. Kuo, C.-H.; Wen, K.-L.; Lin, C.-H.; et al. Investigating near surface S-wave velocity properties using ambient noise in southwestern Taiwan. Terr. Atmos. Ocean. Sci. 2015, 26, 205–211. DOI: https://doi.org/10.3319/TAO.2014.12.02.05(EOSI)
  19. Lim, D.; Ahn, J.-K. Horizontal seismic wave at ground surface from transfer function based on ambient noise. Front. Earth Sci. 2023, 11, 1047667. DOI: https://doi.org/10.3389/feart.2023.1047667
  20. Cox, B.R.; Tianjian, C.; Vantassel, J.P.; et al. A statistical representation and frequency-domain window-rejection algorithm for single-station HVSR measurements. Geophys. J. Int. 2020, 221, 2170–2183. DOI: https://doi.org/10.1093/gji/ggaa119
  21. Hayashi, K.; Asten, M.W.; Stephenson, W.J.; et al. Microtremor array method using spatial autocorrelation analysis of Rayleigh-wave data. J. Seismol. 2022, 26, 601–627. DOI: https://doi.org/10.1007/s10950-021-10051-y
  22. Ulysse, S.; Boisson, D.; Prépetit, C.; et al. Site effect assessment of the Gros-Morne Hill area in Port-au-Prince, Haiti, Part A: Geophysical-seismological survey results. Geosciences 2018, 8, 142. DOI: https://doi.org/10.3390/geosciences8040142
  23. Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. Railway Tech. Res. Inst. 1989, 30, 25–33.
  24. Nakamura, Y. On the H/V spectrum. In Proceedings of the 12th World Conference on Earthquake Engineering, Beijing, China, 12 October 2008.
  25. Arai, H.; Tokimatsu, K. S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull. Seismol. Soc. Am. 2004, 94, 53–63. DOI: https://doi.org/10.1785/0120030028
  26. Castellaro, S. The complementarity of H/V and dispersion curves. Geophysics 2016, 81, 1–16. DOI: https://doi.org/10.1190/geo2015-0399.1
  27. Nelson, S.; McBride, J. Application of HVSR to estimating thickness of laterite weathering profiles in basalt. Earth Surf. Process. Landf. 2019, 44, 1365–1376. DOI: https://doi.org/10.1002/esp.4580
  28. Castellaro, S.; Mulargia, F.; Bianconi, L. Passive seismic stratigraphy: a new efficient, fast and economic technique. Geol. Tecn. Ambientale 2005, 3, 76–102.
  29. Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. DOI: https://doi.org/10.1785/BSSA0880010228
  30. Del Monaco, F.; Tallini, M.; De Rose, C.; et al. HVNSR survey in historical downtown L’Aquila (central Italy): site resonance properties vs. subsoil model. Eng. Geol. 2013, 158, 34–47.
  31. Stanko, D.; Markušić, S.; Strelec, S.; et al. HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dyn. Earthq. Eng. 2013, 92, 666–677. DOI: https://doi.org/10.1016/j.soildyn.2016.10.022
  32. Mahajan, A.K.; Galiana-Merino, J.J.; Lindholm, C.; et al. Characterization of the sedimentary cover at the Himalayan foothills using active and passive seismic techniques. J. Appl. Geophys. 2011, 73, 196–206. DOI: https://doi.org/10.1016/j.jappgeo.2011.01.002
  33. Haefner, R.J.; Sheets, R.A.; Andrews, R.E. Evaluation of the horizontal-to-vertical spectral ratio (HVSR) seismic method to determine sediment thickness in the vicinity of the South Well Field, Franklin County, OH. Ohio J. Sci. 2010, 110, 77–85.
  34. Grippa, A.; Bianca, M.; Tropeano, M.; et al. Use of the HVSR method to detect buried paleomorphologies (filled incised-valleys) below a coastal plain: the case of the Metaponto plain (Basilicata, southern Italy). Boll. Geofis. Teor. Appl. 2011, 52, 225–240. DOI: https://doi.org/10.4430/bgta0011
  35. Chandler, V.W.; Lively, R.S. OFR14-01, Evaluation of the horizontal-to-vertical spectral ratio (HVSR) passive seismic method for estimating the thickness of Quaternary deposits in Minnesota and adjacent parts of Wisconsin. Available online: https://hdl.handle.net/11299/162792 (accessed on 4 July 2025).
  36. Zhu, C.; Cotton, F.; Pilz, M. Detecting Site Resonant Frequency Using HVSR: Fourier versus response spectrum and the first versus the highest peak frequency. Bull. Seismol. Soc. Am. 2020, 110, 427–440. DOI: https://doi.org/10.1785/0120190186
  37. Yamazaki, F.; Ansary, M.A. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization. Earth. Eng. Struct. Dyn. 1997, 26, 671–689. DOI: https://doi.org/10.1002/(SICI)1096-9845(199707)26:7<671::AID-EQE669>3.0.CO;2-S
  38. Mi, B.; Hu, Y.; Jianghai, X.; et al. Estimation of horizontal-to-vertical spectral ratios (ellipticity) of Rayleigh waves from multistation active-seismic records. Geophysics 2019, 84. DOI: https://doi.org/10.1190/geo2018-0651.1
  39. Xu, R.; Wang, L. The horizontal-to-vertical spectral ratio and its applications. EURASIP J. Adv. Sign. Proc. 2021, 75, 1–10. DOI: https://doi.org/10.1186/s13634-021-00765-z
  40. Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves MASW. Geophysics 1999, 64, 800–808. DOI: https://doi.org/10.1190/1.1444590
  41. Park, C.; Ryden, N. Historical overview of the surface wave method. Symp. Appl. Geophys. Eng. Environ. Prob. 2007, 897–909. DOI: https://doi.org/10.4133/1.2924752
  42. Kim, D.-S.; Park, H.-C. Determination of dispersive phase velocities for SASW method using harmonic wavelet transform. Soil Dyn. Earth. Eng. 2002, 22, 675–684. DOI: https://doi.org/10.1016/S0267-7261(02)00043-X
  43. Kang, S.Y.; Kim, K.-H.; Chiu, J.-M.; et al. Microtremor HVSR analysis of heterogeneous shallow sedimentary structures at Pohang, South Korea. J. Geophys. Eng. 2020, 17, 861–869. DOI: https://doi.org/10.1093/jge/gxaa035
  44. Luzi, L.; Puglia, R.; Pacor, F.; et al. Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bull. Earth. Eng. 2011, 9, 1877–1898. DOI: https://doi.org/10.1007/s10518-011-9274-2
  45. Héloïse, C.; Bard, P.-Y.; Duval, A.-M.; et al. Site effect assessment using KiK-net data: part 2—site amplification prediction equation based on f0 and Vsz. Bull. Earth. Eng. 2012, 10, 451–489. DOI: https://doi.org/10.1007/s10518-011-9298-7
  46. Delgado, J.; Casado, C.P.; Giner, J.; et al. Microtremors as a geophysical exploration tool: applications and limitations. Pure Appl. Geophys. 2000, 157, 1445–1462. DOI: https://doi.org/10.1007/PL00001128
  47. Luzi, L.; Bindi, D.; Franceschina, G.; et al. Geotechnical Site Characterisation in the Umbria-Marche Area and Evaluation of Earthquake Site-Response. Pure Appl. Geophys. 2005, 162, 2133–2161. DOI: https://doi.org/10.1007/s00024-005-2707-6
  48. Di Giulio, G.; Cultrera, G.; Cornou, C.; et al. Quality assessment for site characterization at seismic stations. Bull. Earth. Eng. 2021, 19, 463–4691. DOI: https://doi.org/10.1007/s10518-021-01137-6
  49. Nugraheni, A.S.; Setianto, A.; Setiawan, H. Comparison of Vs30 value from microtremor data based on SPT drill test of young Merapi deposits in Opak River, Yogyakarta. J. Geos. Rem. Sens. 2024, 101–110. DOI: https://doi.org/10.23960/jgrs.ft.unila.304
  50. Kwak, D.Y.; Stewart, J.P.; Mandokhail, S.J.; et al. Supplementing VS30 with H/V spectral ratios for predicting site effects. Bull. Seismol. Soc. Am. 2017, 107, 2028–2042. DOI: https://doi.org/10.1785/0120160353
  51. Wagle, K.S. Development of data-driven models to predict VS30 with mHVSR. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 6 May 2025. Available online: https://hdl.handle.net/10919/134297
  52. Grutas, R.N.; Serrano, A.T.; Tan, J.M.L.C.; et al. Rapid estimation of Vs30 through elitist genetic algorithm HVSR inversion and refraction microtremor data analysis in the Greater Metro Manila Area and Leyte Province, Philippines. Appl. Sci. 2025, 15, 2447. DOI: https://doi.org/10.3390/app15052447
  53. Francisco, G.-S.; Mojica, A.; Ho, C.; et al. Horizontal-to-vertical spectral ratios and refraction microtremor analyses for seismic site effects and soil classification in the City of David, western Panama. Geosciences 2023, 13, 287. DOI: https://doi.org/10.3390/geosciences13100287
  54. Alexopoulos, J.D.; Dilalos, S.; Voulgaris, N.; et al. The contribution of near-surface geophysics for the site characterization of seismological stations. Appl. Sci. 2023, 13, 4932. DOI: https://doi.org/10.3390/app13084932
  55. Ávila-Barrientos, L.; Yegres-Herrera, L.A.; Flores-Estrella, H.; et al. Seismic site conditions of RESNOM network. Seismica 2024, 3, 1–10. DOI: https://doi.org/10.26443/seismica.v3i2.1151
  56. Yong, A.; Martin, A.; Stokoe, K.; et al. ARRA-funded VS30 measurements using multi-technique approach at strong-motion stations in California and central-eastern United States. In U.S. Geological Survey Open-File Report 2013–1102; Geological Survey (U.S.): Reston, VA, USA, 2013. Available online: https://pubs.usgs.gov/of/2013/1102/ (accessed on 4 July 2025).
  57. Gospe, T.; Zimmaro, P.; Wang, P.; et al. Supplementing shear wave velocity profile database with microtremor-based H/V spectral ratios. In Proceedings of the 17th World Conference on Earthquake Engineering, Sendai, Japan, 13 September 2020. Available online: https://escholarship.org/uc/item/49g807wz
  58. Odum, J.K.; Stephenson, W.J.; Williams, R.A.; et al. VS30 and spectral response from collocated shallow, active-, and passive-source VS data at 27 sites in Puerto Rico. Bull. Seismol. Soc. Am. 2013, 103, 2709–2728. DOI: https://doi.org/10.1785/0120120349
  59. Stephenson, W.J.; Yong, A.; Martin, A. Flexible multimethod approach for seismic site characterization. J. Seismol. 2022, 26, 687–711. DOI: https://doi.org/10.1007/s10950-022-10102-y
  60. Cederberg, J.R.; Gardner, P.M.; Thiros, S.A. Hydrology of northern Utah Valley, Utah County, Utah, 1975–2005. In Scientific Investigations Report 2008-5197; Geological Survey (U.S.): Reston, VA, USA, 2009. Available online: https://pubs.usgs.gov/sir/2008/5197/
  61. Stephenson, W.J.; Odum, J.K.; Williams, R.A.; et al. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging. Bull. Seismol. Soc. Am. 2012, 102, 524–540. DOI: https://doi.org/10.1785/0120110053
  62. Davis, D.A.; Cook, K.L. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah, part 1 gravity survey. Utah Geol. Min. Surv. Rep. Invest. 1983. Available online: https://ugspub.nr.utah.gov/publications/reports_of_investigations/RI-179.pdf
  63. Kowallis, B.J.; Wald, L.C. Rock Canyon near Provo, Utah County—a geologic field laboratory. In Utah Geosites; Milligan, M., Biek, R.F., Inkenbrandt, P., et al., Eds.; Utah Geological Association: Salt Lake City, CO, USA, 2019; pp. 1–15. DOI: https://doi.org/10.31711/geosites.v1i1.58
  64. Machette, M.N. Surficial geologic map of the Wasatch Fault zone, eastern part of Utah Valley, Utah County and parts of Salt Lake and Juab Counties, Utah. U.S. Geol. Surv. Misc. Invest. Ser. Map 1992. DOI: https://doi.org/10.3133/i2095
  65. Solomon, B.J.; Constenius, B.K.; Machette, M.N. Interim geologic map of the Orem quadrangle, Utah County, Utah. Utah Geol. Surv. Open-file Rep. 2010, 567.
  66. Bissell, H.J. Lake Bonneville: Geology of Southern Utah Valley, Utah; U.S. Geological Survey: Washington, D.C., USA, 1963; pp. 1–130.
  67. Solomon, B.J.; Machette, M.N. Interim geologic map of the Provo 7.5' quadrangle, Utah County, Utah. Utah Geol. Surv. Open-file Rep. 2008, 525, 31.
  68. 2014 Seismic Hazard Map- Utah. Available online: https://www.usgs.gov/media/images/2014-seismic-hazard-map-utah (accessed on 4 July 2025).
  69. NEHRP Recommended Seismic Provisions for New Buildings and Other Structures, Volume I: Part 1 Provisions, Part 2 Commentary FEMA P-2082-1. 2020. Available online: https://nibs.org/wp-content/uploads/2025/04/fema_2020-nehrp-provisions_part-1-and-part-2.pdf (accessed on 4 July 2025).
  70. National Oceanic and Atmospheric Administration. Available online: https://www.weather.gov/wrh/Climate?wfo=slc (accessed on 20 August 2025).
  71. Nelson, S.; McBride, J.; Rey, K. The effect of saturation and salts on the rigidity of fine-grained material. J. Appl. Geophys. 2023, 213, 1–8. DOI: https://doi.org/10.1016/j.jappgeo.2023.105048
  72. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 12–53.
  73. Stephenson, W.J.; Odum, J.K. Application of the spatial-autocorrelation microtremor-array method for characterizing S-wave velocity in the upper 300 m of Salt Lake Valley, Utah. Geophys. Dev. Ser. 2002, 447–460. DOI: https://doi.org/10.1190/1.9781560802259.ch28
  74. Gniazdowska, A. Seismic Surface Wave Surveying of Levees in the Sacramento Delta. Master’s Thesis, California State University, East Bay, Hayward, CA, USA, December 2021. Available online: https://hdl.handle.net/20.500.12680/4m90f174j
  75. Gniazdowska, A.; Craig, M.; Uhlemann, S.; et al. Seismic surface wave surveying of levees in the Sacramento Delta using 1D and 2D active and passive methods. In Proceedings of the American Geophysical Union Fall Meeting, New Orleans, LA, USA, 13 December 2021.
  76. Uhlemann, S.; Ulrich, C.; Gniazdowska, A.; et al. Rapid geophysical characterization of levees internal structure using streamer-based multi-method geophysical approaches. In Proceedings of the American Geophysical Union Fall Meeting, New Orleans, LA, USA, 13 December 2021.
  77. Bollinger, G.A. Seismicity of the southeastern United States. Bull. Seismol. Soc. Am. 1973, 63, 1785–1808. DOI: https://doi.org/10.1785/BSSA0630051785