A New Fault Branch Revealed by Geology and Archaeology Under the Seismic Lorca Town (Southeast Spain)

Prevention and Treatment of Natural Disasters

Article

A New Fault Branch Revealed by Geology and Archaeology Under the Seismic Lorca Town (Southeast Spain)

García‑Mondéjar, J., Fernández Azorín, T., Martínez Rodríguez, A., & Ponce García, J. (2025). A New Fault Branch Revealed by Geology and Archaeology Under the Seismic Lorca Town (Southeast Spain). Prevention and Treatment of Natural Disasters, 4(2), 8–30. https://doi.org/10.54963/ptnd.v4i2.1394

Authors

  • Joaquín García‑Mondéjar

    Department of Geology, Faculty of Science and Technology, Basque Country University (UPV/EHU), Lejona 48940, Spain
  • Teresa Fernández Azorín

    Maurandi Engineering Projects, SL. 21 Juan Carlos I Avenue, 611 Apartment, Murcia 30009, Spain
  • Andrés Martínez Rodríguez

    Municipal Archaeological Museum of Lorca, Juan Moreno Place, s/n, Murcia 30800, Spain
  • Juana Ponce García

    Municipal Archaeological Museum of Lorca, Juan Moreno Place, s/n, Murcia 30800, Spain

Received: 13 July 2025; Revised: 15 September 2025; Accepted: 18 September 2025; Published: 2 October 2025

Lorca town (southeast Spain) is on the trace of the southwest-northeast Alhama de Murcia fault. This fault splits into several branches in Lorca, which are hidden under the urban area. Most of the branches were identified in excavation sites and deformed houses at the surface. The formerly hypothesized Alburquerque branch is here confirmed, with the discovery of two closely spaced faults in the 6 Selgas street excavation site. This branch, coated with fibrous gypsum, cut and verticalized middle Miocene lutites during the Plio-Quaternary, creating a breccia and fracture cleavage. It also produced surface rupture, disturbing both Late Antiquity burials and a XIII century red gravel unit, most probably accompanied by earthquakes in the town between the 5th century and the house construction date (1775 AD). The preserved southwest Aguado alley facade of that house appears nowadays bent, with the vertical edge of the dihedral angle located directly above the Alburquerque fault. This implied both 2.5° of rotation and 0.2 m of horizontal displacement in the southeast corner of the facade, along the last 250 years. Series disruption, breccia, fracture cleavage, surface rupture, and recent rotation, all features together suggest left-lateral oblique-slip action of the Alburquerque fault.

Keywords:

Alhama de Murcia Fault Alburquerque Fault Branch Surface Rupture Bent Facade Miocene‑Present Sinistral Oblique‑Slip

References

  1. Quaternary Active Faults Database of Iberia. Available online: http://info.igme.es/qafi/ (accessed on 9 February 2025).
  2. Bousquet, J.C. Quaternary Strike-Slip Faults in Southeastern Spain. Dev. Geotecton. 1979, 13, 277–286. DOI: https://doi.org/10.1016/B978-0-444-41783-1.50044-1
  3. Montenat, C.; Ott d'Estevou, P.; Delort, T. The Lorca Basin. Doc. Trav. IGAL 1990, 261–280. (in French)
  4. Díaz, J.J.M.; Enrile, J.L.H. Reactivation of the Alhama de Murcia Fault (Lorca-Totana Sector): Kinematics and Stress Fields from the Messinian to the Present. Geogaceta 1991, 9, 38–42. (in Spanish)
  5. Estrella, T.R.; Jiménez, M.A.M. The Neotectonics of Lorca and its Surrounding Areas in Relation to the Current Activity of the Alhama de Murcia Fault. Analysis of the Cracks in the Lorca Tunnel and the Upper Neighborhoods of the City. In Proceedings of the V National Meeting on Environmental Geology and Land Use Planning, Murcia, Spain, 1993. (in Spanish)
  6. Masana, E.; Díaz, J.J.M.; Hernández-Enrile, J.L.; et al. The Alhama de Murcia Fault (SE Spain), a Seismogenic Fault in a Diffuse Plate Boundary: Seismotectonic Implications for the Ibero-Maghrebian Region. J. Geophys. Res.-Solid Earth 2004, 109, 1–17. DOI: https://doi.org/10.1029/2002JB002359
  7. del Olmo, W.M.; Klimowitz, J.; Hernández, E. The Miocene Extensional Detachment of the Alhama de Murcia Fault Zone. Bol. Geol. Min. 2006, 117, 363–377. (in Spanish)
  8. Martínez-Díaz, J.; Béjar-Pizarro, M.; Álvarez-Gómez, J.A.; et al. Tectonic and Seismic Implications of an Intersegment Rupture: The Damaging May 11th 2011 Mw 5.2 Lorca, Spain, Earthquake. Tectonophysics 2012, 546–547, 28–37. DOI: https://doi.org/10.1016/j.tecto.2012.04.010
  9. Ortuño, M.; Masana, E.; García-Meléndez, E.; et al. An Exceptionally Long Paleoseismic Record of a Slow-Moving Fault: The Alhama de Murcia Fault (Eastern Betic Shear Zone, Spain). Geol. Soc. Am. Bull. 2012, 124, 1474–1494. DOI: https://doi.org/10.1130/B30558.1
  10. García-Mondéjar, J.; de Galdeano, C.S.; Salvador, J.M.F. Relationship Between Neogene-Quaternary Sedimentation and Tectonics in the Lorca Sector. Rev. Soc. Geol. Esp. 2014, 27, 253–269. (in Spanish)
  11. Canora, C.; Roca, C.; Martínez-Díaz, J.; et al. New Data on Paleoseismic Activity of the Alhama de Murcia Fault in the La Salud Fan (Lorca-Totana Segment), Eastern Betics. Geotemas 2016, 16, 563–566. (in Spanish)
  12. Ferrater, M.; Ortuño, M.; Masana, E.; et al. Refining Seismic Parameters in Low Seismicity Areas by 3D Trenching: The Alhama de Murcia Fault, SE Iberia. Tectonophysics 2016, 680, 122–128. DOI: https://doi.org/10.1016/j.tecto.2016.05.020
  13. Martínez-Díaz, J.J.; Alonso-Henar, J.; Insua-Arévalo, J.M.; et al. Geological Evidences of Surface Rupture Related to a Seventeenth Century Destructive Earthquake in Betic Cordillera (SE Spain): Constraining the Seismic Hazard of the Alhama de Murcia Fault. J. Iber. Geol. 2019, 45, 73–86. DOI: https://doi.org/10.1007/s41513-018-0082-2
  14. Martí, A.; Queralt, P.; Marcuello, A.; et al. Magnetotelluric Characterization of the Alhama de Murcia Fault (Eastern Betics, Spain) and Study of Magnetotelluric Interstation Impedance Inversion. Earth Planet. Space 2020, 72, 16. DOI: https://doi.org/10.1186/s40623-020-1143-2
  15. Gómez-Novell, O. Paleoseismic Transect Across the Alhama de Murcia Fault and Implications of a Fault-Based Seismic Hazard Assessment for the Eastern Betics. Ph.D. Thesis, Universidad de Barcelona, Barcelona, España, 25 October 2021.
  16. Ollé, M.; Dufour, D.; Gómez-Novel, O.; et al. New Paleoseismic Data for the Characterization of a Complete Transect of the Alhama de Murcia Fault (SE Spain). In IV Iberian Meeting on Active Faults and Paleoseismology, Teruel, Spain, 7–20 September 2022. (in Spanish)
  17. Pérez, J.B.; Barranco, L.M. Geological Map of the Autonomous Community of the Region of Murcia Scale 1:200.000. IGME: Madrid, Spain, 1993. (in Spanish)
  18. Martínez-Díaz, J.J. Stress Field Variation Related to Fault Interaction in a Reverse Oblique-Slip Fault: The Alhama de Murcia Fault, Betic Cordillera, Spain. Tectonophysics 2002, 356, 291–305. DOI: https://doi.org/10.1016/S0040-1951(02)00400-6
  19. Booth-Rea, G.; Azañón, J.M.; García-Dueñas, V. Extensional Tectonics in the Northeastern Betics (SE Spain): Case Study of Extension in a Multilayered Upper Crust with Contrasting Rheologies. J. Struct. Geol. 2004, 26, 2039–2058.
  20. Booth-Rea, G.; Silva, P. Geological Map Scale 1:50.000 of the Region of Murcia. IGME: Madrid, Spain, 2004. (in Spanish)
  21. Giner-Robles, J.L.; Pérez-López, R.; Barroso, P.S.; et al. Structural Analysis of Oriented Damage in the Lorca Earthquake of May 11, 2011. Applications in Archaeoseismology. Bol. Geol. Min. 2012, 123, 503–513. (in Spanish)
  22. de Galdeano, C.S.; García-Mondéjar, J.; Ferrairó, J.M. Tectonic Evolution of the Lorca Sector from the Upper Miocene to the Quaternary. Fís. Tierra 2012, 24, 193–211. DOI: https://doi.org/10.5209/rev_FITE.2012.v24.40138 (in Spanish)
  23. García-Mondéjar, J.; de Galdeano, C.S.; Rodríguez, A.M.; et al. Fault-Induced Deformation in Houses and Streets of Lorca Town (Spain) During the Last Centuries. Rev. Soc. Geol. Esp. 2017, 30, 3–19.
  24. Escudero, E.R. Implications of the Internal Structure of an Active Fault Zone in the Genesis of Earthquakes. Ph.D. Thesis, Autonomous University of Madrid, Madrid, Spain, January 2017. (in Spanish)
  25. Clares, M.M.; Carrascosa, M.F.; López, M.O.A.; et al. Historical Seismicity and Municipal Documentation, The Case of Lorca. Bol. Geol. Min. 2012, 123, 415–429.
  26. Muñoz, R.V. The Lorca Earthquake of 11 May 2011. Bol. Geol. Min. 2012, 123, 411–412. (in Spanish)
  27. Rodríguez-Pascua, M.A.; Pérez-López, R.; Martín-González, F.; et al. Architectural Effects of the Lorca Earthquake of May 11, 2011. Neoformation and Reactivation of Effects on Cultural Heritage. Bol. Geol. Min. 2012, 123, 487–502. (in Spanish)
  28. Ballesteros, J.Á.G.; Carrillo, J.G.; Aguilera, V.L. Earthquake Damage to the Historic Pantheons of the San Clemente Cemetery, the Church of Santa María, the Church of San Pedro, and the Fuente del Oro in Lorca, Murcia. Bol. Geol. Min. 2012, 123, 537–548. (in Spanish)
  29. Ferrater, M.; Silva, P.G.; Ortuño, M.; et al. Archaeosismological Analysis of a Late Bronze Age Site on the Alhama de Murcia Fault, SE Spain. Geoarchaeology 2015, 30, 151–164. DOI: https://doi.org/10.1002/gea.21505
  30. Informe del Sismo de Lorca del 11 de Mayo de 2011. Available online: http://www.ign.es/web/resources/sismologia/www/lorca/Lorcainfo2011.pdf (accessed on 9 February 2025). (in Spanish)
  31. British Geological Survey. Available online: https://www.bgs.ac.uk/geology-projects/geodesy/seismic-cities (accessed on 9 July 2025).
  32. Falcone, F.; Di Valerio, E.; La Salvia, V.; et al. Geo-Archaeology, Archaeometry, and History of a Seismic-Endangered Historical Site in Central Apennines (Italy). Herit. Sci. 2023, 11, 68. DOI: https://doi.org/10.1186/s40494-023-00906-7
  33. Finkler, C.; Baika, K.; Rigakou, D.; et al. Geoarchaeological Investigations of a Prominent Quay Wall in Ancient Corcyra – Implications for Harbour Development, Palaeoenvironmental Changes and Tectonic Geomorphology of Corfu Island (Ionian Islands, Greece). Quat. Int. 2018, 473, 91–111. DOI: https://doi.org/10.1016/j.quaint.2017.05.013
  34. Stewart, I.S.; Piccardi, L. Seismic Faults and Sacred Sanctuaries in Aegean Antiquity. Proc. Geol. Assoc. 2017, 128, 711–721. DOI: http://dx.doi.org/10.1016/j.pgeola.2017.07.009
  35. Katsonopoulou, D.; Koukouvelas, J. Earthquake Environmental Effects: The Case of Late Classical-Hellenistic Helike, Gulf of Corinth, Greece. Geosciences 2024, 14, 311. DOI: https://doi.org/10.3390/geosciences14110311
  36. Katsonopoulou, D.; Koukouvelas, J.; Kormann, M. Earthquake Destruction and Resilience in Ancient Helike, Gulf of Corinth, Greece: A Case Study of Past Human-Environment Relationship. Land 2025, 14, 1392. DOI: https://doi.org/10.3390/land14071392
  37. Dyl, J.L. Seismic City: An Environmental History of San Francisco’s 1906 Earthquake. University of Washington Press: Seattle, WA, USA, 2017.
  38. Uriarte, M.H.; Azorín, T.F.; Martínez, M.L.; et al. From the Hardware Store to the Late Antique Necropolis at 6 Selgas Street, Lorca (Murcia). Alberca 2021, 19, 87–103. (in Spanish)
  39. Rodríguez, A.M.; García, J.P. A Late Antique Necropolis on Calle Granero, No. 1 Bis (Lorca, Murcia). Mem. Arqueol. 2002, 11, 369–378. (in Spanish)
  40. Bayly, M.B.; Borradaile, G.J.; Powell, C.McA. Atlas of Rock Cleavage-Provisional Edition. Springer: Berlin, Germany.
  41. Powell, C.M. A Morphological Classification of Rock Cleavage. Tectonophysics 1979, 58, 21–34.
  42. Wilson, G. Fracture Cleavage and Strain-Slip Cleavage. In Introduction to Small-scale Geological Structures; Wilson, G., Ed.; Springer: Dordrecht, Netherlands, 1982; pp. 48–60. DOI: https://doi.org/10.1007/978-94-011-6838-0_7
  43. Linkedin. Available online: https://www.linkedin.com/pulse/fracture-cleavage-host-rock-competency-contributions-brett-davis-avoxc (accessed 30 July 2024).
  44. Bastida, F. Primary Schistosity: A Summary of Its Characteristics and Development. Trab. Geol. Univ. Oviedo 1981, 11, 35–54. (in Spanish)
  45. Tullis, T.E. Experiments on the Origin of Slaty Cleavage and Schistosity. Geol. Soc. Am. Bull. 1976, 87, 745–753.
  46. Rutter, E.H.; Maddock, R.H.; Hall, S.H.; et al. Comparative Microstructures of Natural and Experimentally Produced Clay-Bearing Gouges. Pure Appl. Geophys. 1986, 124, 3–30.
  47. Brandon, M.T.; Cowan, D.S.; Feehand, J.G. Fault-Zone Structures and Solution-Mass-Transfer Cleavage in Late Cretaceous Nappes, San Juan Islands, Washington. In Geologic Field Trips in the Pacific Northwest; Swanson, D.A., Haugerud, R.A., Eds.; Geological Society of America: Seattle, Washington, USA, 1994; pp. 1–19.
  48. Sibson, R.H. Preparation Zones for Large Crustal Earthquakes Consequent on Fault-Valve Action. Earth Planet. Space 2020, 72, 31. DOI: https://doi.org/10.1186/s40623-020-01153-x
  49. Rustichelli, A.; Di Celma, C.; Tondi, E.; et al. Fibrous Gypsum Veins as Diffuse Features and Within Fault Zones: The Case Study of the Pisco Basin (Ica Desert, Southern Peru). J. Geol. Soc. 2016, 173, 405–418. DOI: https://doi.org/10.1144/jgs2015-084
  50. Justo, J.L.; Azañón, J.M.; Azor, A.; et al. Neotectonics and Slope Stabilization at the Alhambra, Granada, Spain. Eng. Geol. 2008, 100, 101–119.
  51. De Larouzière, F.D.; Montenat, C.; Ott d’Estevou, P.; et al. Simultaneous Evolution of Neogene Basins in Compression and Extension in a Strike-Fault Corridor: Hinojar and Mazarron (South-Eastern Spain). Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine 1987, 11, 23–38. (in French)
  52. Pérez-Peña, J.V.; Ferrater, M.; Booth-Rea, G.; et al. Drainage Network Evolution Linked with an Extension to Transpression Changing Tectonic Scenario: The Example of the Alhama de Murcia Strike-Slip Fault. In Second Iberian Meeting on Active Faults and Paleoseismology; Álvarez-Gómez, J.A., Martín González, F., Eds.; Geological and Mining Institute of Spain: Murcia, Spain, 2014; pp. 197–200.
  53. Geological Map of Spain, E: 1:50,000, Memory Sheet no 976 (Mazarrón). Available online: https://info.igme.es/cartografiadigital/datos/Magna3s/memorias/MMagna3S_976.pdf (accessed 4 February 2025). (in Spanish)
  54. Hernández-Enrile, J.L.; Martínez-Díaz, J.J.; Masan, E.; et al. Preliminary Results of the Paleoseismic Trench Study of the Alhama de Murcia Fault (Baetic Mountain Range). Geotemas 2000, 1, 335–339. (in Spanish)
  55. García-Mondéjar, J.; Rodríguez, A.M.; García, J.P. The Recent Fluvial Fan of Lorca (Murcia) and Its Transitional to the Guadalentín River: Geological Controls During the Latest Pleistocene-Holocene. Bol. Geol. Min. 2022, 133, 65–93. DOI: https://doi.org/10.21701/bolgeomin/133.2/003 (in Spanish)
  56. Crowell, J.C. Origin of Late Cenozoic Basins in Southern California. In Modern and Ancient Geosynclinal Sedimentation; Dott, R.H., Shaver, R.H., Eds.; Society of Economic Palaeontologists and Mineralogists: Tulsa, OK, USA, 1974; pp. 292–303.
  57. Christie-Blick, N.; Biddle, K.T. Deformation and Basin Formation Along Strike-Slip Faults. In Strike-Slip Deformation, Basin Formation and Sedimentation; Biddle, K.T., Christie-Blick, N., Eds.; Society of Economic Palaeontologists and Mineralogists: Tulsa, OK, USA, 1985; pp. 1–34.
  58. García-Mondéjar, J.; Rodríguez, A.M.; García, J.P. Deformations in an Exterior Area of the Convent of the Virgin of the Huertas (Lorca, Murcia) Attributable to the Local Earthquake of 1579. Geogaceta 2019, 66, 135–138.
  59. Gvirtzman, S.; Kammer, D.S.; Adda-Bedia, M.; et al. How Frictional Ruptures and Earthquakes Nucleate and Evolve. Nature 2025, 637, 369–374. DOI: https://doi.org/10.1038/s41586-024-08287-y

Copyright © UK Scientific Publishing Limited.