Latest Issue
Volume 3, Issue 1
January 2024

New Energy Exploitation and Application is an open access, international English language journal focusing on the latest developments in the field of energy. It aims to provide a communication platform for energy researchers, energy workers, and other people who study and care about energy development worldwide to disseminate, share and discuss the sustainable development of energy.

  • E-ISSN: 2754-5652
  • Frequency: Semiyearly publication
  • Language: English
  • E-mail: neea@ukscip.com

Submit Manuscript

Latest Published Articles

Article

Optimizing Thermal Management: An Evaluation of Embedded Aluminum-Ammonia Heat Pipes Honeycomb Sandwich Panel as a Heat Sink for Satellite Use

This study presents an innovative approach to enhancing thermal management in satellite applications by utilizing an embedded aluminum-ammonia heat pipes honeycomb sandwich panel (HPA-PNL) as a high-performance heat sink. The study focuses on developing and evaluating this advanced heat sink technology, addressing the challenges associated with assessing its performance and suitability for satellite use. The research explores the selection of materials and testing methodologies, highlighting the significance of overcoming existing limitations in the absence of standardized testing methods. The results of the thermal conductivity in Z-directions (KZ) indicated that the areas on top of the heat pipes show higher thermal conductivity than those on top of the honeycomb core. Also, the effect of background heat sources and different kinds of thermal interface material (TIM) on HPA-PNL performance is insignificant. The heat dissipation through the heat pipe is substantial, emphasizing the effective ability to dissipate heat for an HPA-PNL with many heat sources acting simultaneously. The outcomes of this study reveal promising testing methods for evaluating the KZ of the HPA-PNL, proposing the potential of the embedded aluminum-ammonia heat pipes honeycomb sandwich panel as a highly effective and efficient heat sink for satellite systems, thus contributing to the advancement of satellite technology.

Read more

Article

Proposing an Approach for the Diffusion of Building Integrated Photovoltaics (BIPVs)—A Case Study

Consistent probing into building integrity has led to the exploration of clean energy options such as building integrated photovoltaic (BIPV). BIPV has proven to be aesthetically pleasing, architecturally feasible, and capable of making buildings energy producers instead of mere energy consumers. Despite the enormous benefits of BIPV, its adoption and diffusion have been relatively sluggish and remain far below expectations, especially in developing countries like Ghana. This empirical study aims to assess the impact of advertising on BIPV awareness in Ghana. It also highlights the aesthetic preferences of various respondents. The study uses online surveys to gather quantitative data from 412 respondents across all 16 regions of the country. An initial study conducted on the awareness of BIPV in Ghana indicated a low rate of awareness. Therefore, a sensitisation poster and architectural visualization (AV) were adopted to boost awareness across all 16 regions of the country. Awareness of BIPV increased from 18% to 79.5% after the introduction of the sensitisation poster. Also, 88.8% of the respondents preferred BIPV to Building Applied Photovoltaic (BAPV) mainly because of aesthetics (beauty) and the cost benefits. The respondents indicated that aesthetics is paramount when choosing solar panels for their homes. This study therefore recommends high investment in awareness creation, development of specific design guidelines for BIPV applications and establishment of demo projects in developing countries. The findings of this study contribute to the existing literature on BIPV adoption and may be useful for BIPV manufacturers, marketers, government, and other stakeholders as it provides evidence on the often-neglected approach to BIPV diffusion.

Read more

Article

Assessing the Energy Generation and Economics of Combined Solar PV and Wind Turbine-Based Systems with and without Energy Storage—Scottish Perspective

Solar PV and wind energy conversion are now so economical that they compete head-on with all forms of fossil fuel and nuclear energy conversion. In view of climate change and the rising price of electricity due to wars, all governments are also facing popular policy pressures to rapidly switch to renewable energy. In this article, broad research questions are raised, and an attempt is made to provide answers in a logical manner. The questions may be categorized as being those related to the validation of fundamental data needed for the design of renewable energy (RE) systems, the long-term measured performance of those systems and the cost of RE electricity. Interest rates are rising rapidly in the current economic situation, and therefore, the present analysis is based on concurrent rates that are payable by borrowers. Measured data from a medium-sized solar PV and wind turbine facility that has been in operation for over a decade in Central Scotland has been used for this work. The main objectives of this article are: (a) to evaluate the manufacturer’s acclaimed performance, (b) to evaluate capacity factors for PV and wind conversion, and complementarily of solar and PV resources, and (c) to obtain the cost of electricity generation of PV and wind. The primary source for undertaking the above exercise was a decade long, measured dataset from an agricultural farm located in Central Scotland. Commercial PV design software was also used to cross check the presently undertaken analysis. The main conclusion was that a community-based wind/solar plant is much more economical than grid- purchased electricity. The novelty of the present work is that all conclusions that were drawn are based on long datasets of measured wind/solar plants.

Read more

Article

Victoria’s Energy Transition using n Bottom Line Analysis

To achieve net-zero emissions by 2050, Australia must decarbonise the energy sector and other sectors. The 'energy transition' is driven by policy-led construction of renewable infrastructure and regulation changes. However, no holistic analysis of the path forward currently exists. This research aims to develop a clear plan for Victoria's energy transition by evaluating three scenarios. A Business as Usual (BAU) scenario is compared against two alternative solutions. The alternates emulate two of Victoria's possible trajectories. Alternative 1 (ALT1) focuses on Victoria's reliance on imported interstate renewable energy, while Alternative 2 (ALT2) involves Victoria becoming self-sufficient through renewable generation. Each of the three scenarios is compared across four bottom lines: technical performance, social, economic, and environmental. Interviews among energy experts revealed that economic and social metrics were considered most important. Applying the n-bottom line (nBL) assessment framework delivers a result that finds ALT2 and ALT1 tied as the preferred solution. Hence, the construction of renewable infrastructure in Victoria and increased interstate transmission capacity should be built. Further research could include a deeper understanding of the embodied carbon in infrastructure built for the energy transition.

Read more
View All Issues