A Complete Review of Design, Performance, and Future Developments of CPVT Systems

New Energy Exploitation and Application

Review

A Complete Review of Design, Performance, and Future Developments of CPVT Systems

Calik, K., & Firat, C. (2025). A Complete Review of Design, Performance, and Future Developments of CPVT Systems. New Energy Exploitation and Application, 4(2), 98–123. https://doi.org/10.54963/neea.v4i2.1497

Authors

  • Keziban Calik

    Project Consultancy and Construction, SUNOVA LLC, Istanbul 34380, Turkey
  • Coskun Firat

    Energy Institute, Istanbul Technical University, Istanbul, Sarıyer 34469, Turkey

Received: 2 August 2025; Revised: 27 August 2025; Accepted: 30 August 2025; Published: 15 September 2025

Concentrated Photovoltaic‑Thermal (CPVT) systems combine concentrated photovoltaics and thermal energy recovery. This lets them produce electricity and heat from sunlight at the same time. This paper looks at the latest progress in optical concentrators, thermal management methods, and spectral beam splitting techniques. These advances have boosted the system’s overall efficiency to between 60% and 80% under different operating conditions. Particular attention is given to Linear Fresnel Reflectors (LFRs), thermal‑fluid simulations, and the use of artificial intelligence (AI) to improve system design and performance. Modeling methods, such as computational fluid dynamics and ray tracing, are examined to connect theoretical expectations with actual experimental data. The discussion includes major obstacles, like the systems’ reliance on high direct normal irradiance (DNI) and their comparatively high initial expenses. Policy changes that could encourage broader use are suggested. Unlike earlier studies, this review incorporates research from 2024–2025 on AI‑driven controls, hybrid energy storage solutions, and strategies for functioning in areas with low DNI. A meta‑analysis is offered, showing how these changes can lower the levelized cost of electricity (LCoE) to between $0.08 and $0.15 per kilowatt‑hour. The article concludes by exploring potential future research areas, such as creating scalable hybrid systems that can support sustainable energy grids. These developments are aimed at assisting the transition toward energy infrastructures with lower carbon emissions.

Keywords:

Concentrated Photovoltaic‑Thermal (CPVT) Thermal Management Hybrid Solar Systems Linear Fresnel Reflectors Artificial Intelligence Energy Storage

References

  1. Hassan, Q.; Algburi, S.; Jaszczur, M.; et al. Adapting German energy transition rules for Iraq through industry, flexibility, and demand management. Futures 2024, 161, 103411. DOI: https://doi.org/10.1016/j.futures.2024.103411
  2. Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; et al. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118. DOI: https://doi.org/10.1016/j.nexus.2022.100118
  3. IEA. World Energy Investment 2025. June 2025. International Energy Agency: Paris, France. Available online: https://www.iea.org/reports/world-energy-investment-2025 (accessed on 1 August 2025).
  4. IEA. Electricity 2025. February 2025. International Energy Agency: Paris, France. Available online: https://www.iea.org/reports/electricity-2025 (accessed on 1 August 2025).
  5. Roudbari, F.N.; Ehsani, H.; Amiri, S.R.; et al. Advances in photovoltaic thermal systems: A comprehensive review of CPVT and PVT technologies. Sol. Energy Mater. Sol. Cells 2024, 276, 113070. DOI: https://doi.org/10.1016/j.solmat.2024.113070
  6. Jacob, J.; Pandey, A.K.; Rahim, N.A.; et al. Concentrated Photovoltaic Thermal (CPVT) systems: Recent advancements in clean energy applications, thermal management and storage. J. Energy Storage 2022, 45, 103369. DOI: https://doi.org/10.1016/j.est.2021.103369
  7. Sharaf, O.Z.; Orhan, M.F. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies. Renew. Sustain. Energy Rev. 2015, 50, 1500–1565. DOI: https://doi.org/10.1016/j.rser.2015.05.036
  8. Ju, X.; Xu, C.; Han, X.; et al. A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology. Appl. Energy 2017, 187, 534–563. DOI: https://doi.org/10.1016/j.apenergy.2016.11.087
  9. Mittelman, G.; Kribus, A.; Dayan, A. Solar cooling with concentrating photovoltaic/thermal (CPVT) systems. Energy Convers. Manag. 2007, 48(9), 2481–2490. DOI: https://doi.org/10.1016/j.enconman.2007.04.004
  10. Liang, H.; Wang, F.; Yang, L.; et al. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renew. Sustain. Energy Rev. 2021, 141, 110785. DOI: https://doi.org/10.1016/j.rser.2021.110785
  11. Hasan, M.M.; Hossain, S.; Mofijur, M.; et al. Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions. Energies 2023, 16(18), 6456. DOI: https://doi.org/10.3390/en16186456
  12. Aghaei, M.; Fairbrother, A.; Gok, A.; et al. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. DOI: https://doi.org/10.1016/j.rser.2022.112160
  13. Kidd, M. A Brief History of Solar Power: The Evolution of Renewable Energy. Endless Energy. Available online: https://goendlessenergy.com/blog/commercial-solar/a-brief-history-of-solar-power/ (accessed on 15 July 2025).
  14. Chu, E.; Tarazano, D.L. A Brief History of Solar Panels. Smithsonian Magazine. Available online: https://www.smithsonianmag.com/sponsored/brief-history-solar-panels-180972006/ (accessed on 15 July 2025).
  15. Kasaeian, A.; Tabasi, S.; Ghaderian, J.; et al. A review on parabolic trough/Fresnel based photovoltaic thermal systems. Renew. Sustain. Energy Rev. 2018, 91, 193–204. DOI: https://doi.org/10.1016/j.rser.2018.03.114
  16. Miller, D.C.; Kurtz, S.R. Durability of Fresnel lenses: A review specific to the concentrating photovoltaic application. Sol. Energy Mater. Sol. Cells 2011, 95, 2037–2068. DOI: https://doi.org/10.1016/j.solmat.2011.01.031
  17. Byelle, S.; Bairwa, B.; R.C., N.; et al. Modeling and Performance Analysis of a 350kW Solar Power Plant. In Proceedings of the 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–6. DOI: https://doi.org/10.1109/ICCCNT61001.2024.10725710
  18. Hmouda, R.A.; Muzychka, Y.S.; Duan, X. Experimental and Theoretical Modelling of Concentrating Photovoltaic Thermal System with Ge-Based Multi-Junction Solar Cells. Energies 2022, 15, 4056. DOI: https://doi.org/10.3390/en15114056
  19. Shanks, K.; Senthilarasu, S.; Mallick, T.K. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 2016, 60, 394–407. DOI: https://doi.org/10.1016/j.rser.2016.01.089
  20. Calik, K.; Firat, C. Electrical and Thermal Performance Analysis of a Linear Fresnel Reflector- Photovoltaic/Thermal System. Acad. Plat. J. Eng. Sci. 2021, 9, 264–273.
  21. Hasan, A.; Sarwar, J.; Shah, A.H. Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities. Renew. Sustain. Energy Rev. 2018, 94, 835–852. DOI: https://doi.org/10.1016/j.rser.2018.06.014
  22. Plataforma Solar de Almería. FRESDEMO. Available online: https://www.psa.es/en/facilities/fresnel/fresdemo.php (accessed on 1 August 2025).
  23. Calik, K.; Firat, C. Geometric Analysis of the Optical Losses in A Linear Fresnel Reflector-Photovoltaic System. In Science and Engineering; Cakir, O; Asos Publications: Ankara, Türkiye, 2020; pp. 374.
  24. Geisz, J.F.; France, R.M.; Schulte, K.L.; et al. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 2020, 5, 326–335. DOI: https://doi.org/10.1038/s41560-020-0598-5
  25. Green, M.A.; Emery, K.; Hishikawa, Y.; et al. Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 2017, 25, 3–13. DOI: https://doi.org/10.1002/pip.2855
  26. Variava, J.M.; Ratnadhariya, J.K.; Siddiqui, M.I.H.; Sadasivuni, K.K. 3D numerical model of a concentrated photovoltaic thermal (CPV/T) system for thermal and electrical performance optimization. Case Stud. Therm. Eng. 2024, 61, 104823. DOI: https://doi.org/10.1016/j.csite.2024.104823
  27. Panduro, E.A.C.; Finotti, F.; Largiller, G.; et al. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors. Appl. Therm. Eng. 2022, 211, 118346. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118346
  28. Abd-Elhady, M.M.; Agwa, O.M.; Bayoumy, M.K.; et al. Experimental investigation of hybrid photovoltaic-thermal system: Integration of concentration, tracking, and cooling mechanisms. Sol. Energy 2025, 299, 113759. DOI: https://doi.org/10.1016/j.solener.2025.113759
  29. Saymbetov, A.; Mekhilef, S.; Kuttybay, N.; et al. Dual-axis schedule tracker with an adaptive algorithm for a strong scattering of sunbeam. Sol. Energy 2021, 224, 285–297. DOI: https://doi.org/10.1016/j.solener.2021.06.024
  30. Sen, P.K.; Ashutosh, K.; Bhuwanesh, K.; et al. Linear Fresnel Mirror Solar Concentrator with Tracking. Procedia Eng. 2013, 56, 613–618. DOI: https://doi.org/10.1016/j.proeng.2013.03.167
  31. Manokar, A.M.; Winston, D.P.; Vimala, M. Performance Analysis of Parabolic Trough Concentrating Photovoltaic Thermal System. Procedia Technol. 2016, 24, 485–491. DOI: https://doi.org/10.1016/j.protcy.2016.05.083
  32. Haridy, S.; Radwan, A.; Soliman, A.S.; et al. Thermal management of high concentrator photovoltaic module using an optimized microchannel heat sink. Energy Nexus 2025, 17, 100376. DOI: https://doi.org/10.1016/j.nexus.2025.100376
  33. Sharaf, O.Z.; Orhan, M.F. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions. Renew. Sustain. Energy Rev. 2015, 50, 1566–1633. DOI: https://doi.org/10.1016/j.rser.2014.07.215
  34. Papis-Frączek, K.; Sornek, K. A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling. Energies 2022, 15, 6123. DOI: https://doi.org/10.3390/en15176123
  35. Alzahrani, M.; Shanks, K.; Mallick, T.K. Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system. Renew. Sustain. Energy Rev. 2021, 138, 110517. DOI: https://doi.org/10.1016/j.rser.2020.110517
  36. Renno, C.; Petito, F.; D’Agostino, D.; Minichiello, F. Modeling of a CPV/T-ORC Combined System Adopted for an Industrial User. Energies 2020, 13, 3476. DOI: https://doi.org/10.3390/en13133476
  37. Haysom, J.E.; Jafarieh, O.; Anis, H.; et al. Learning curve analysis of concentrated photovoltaic systems. Prog. Photovolt. Res. Appl. 2015, 23, 1678–1686. DOI: https://doi.org/10.1002/pip.2567
  38. George, M.; Pandey, A.K.; Rahim, N.A.; et al. Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications. Energy Convers. Manag. 2019, 186, 15–41. DOI: https://doi.org/10.1016/j.enconman.2019.02.052
  39. Calik, K.; Firat, C. Comparative energy and exergy analysis of a CPV/T system based on linear Fresnel reflectors. Energy Harvest. Syst. 2023, 11, 20230052. DOI: https://doi.org/10.1515/ehs-2023-0052
  40. IEA. Renewables 2022. December 2022. IEA: Paris, France. Available online: https://www.iea.org/reports/renewables-2022 (accessed on 16 July 2025).
  41. IRENA. Renewable energy statistics 2023; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023.
  42. Yusuf, A.; Bayhan, N.; Tiryaki, H.; et al. MACHINE LEARNING AS A POWERFUL TOOL FOR PERFORMANCE PREDICTION AND OPTIMIZATION OF CONCENTRATED PHOTOVOLTAIC-THERMOELECTRIC SYSTEM. Konya J. Eng. Sci. 2024, 12, 478–493. DOI: https://doi.org/10.36306/konjes.1396648
  43. Akrouch, M.A.; Chahine, K.; Faraj, J.; et al. Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification. Energy Built Environ. 2025, 6, 248–276. DOI: https://doi.org/10.1016/j.enbenv.2023.11.002
  44. El Kassar, R.; Al Takash, A.; Faraj, J.; et al. Phase change materials for enhanced photovoltaic panels performance: A comprehensive review and critical analysis. Energy Built Environ. 2025, 6, 655–675. DOI: https://doi.org/10.1016/j.enbenv.2024.02.004
  45. Said, Z.; Pandey, A.K.; Tiwari, A.K.; et al. Nano-enhanced phase change materials: Fundamentals and applications. Prog. Energy Combust. Sci. 2024, 104, 101162. DOI: https://doi.org/10.1016/j.pecs.2024.101162
  46. Dehghan, M.; Ghasemizadeh, M.; Firat, C.; et al. Phase-Change Material (PCM) Thermophysical Property Improvement by Nanoparticles. In Advanced Materials-Based Thermally Enhanced Phase Change Materials; Ali, H.M., Ed.; Elsevier, New York, NY, USA, 2024; pp. 193–218. DOI: https://doi.org/10.1016/B978-0-443-21574-2.00012-5
  47. Kumar, R.R.; Samykano, M.; Pandey, A.; et al. Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: a futuristic approach and its technical challenges. Renew. Sustain. Energy Rev. 2020, 133, 110341. DOI: https://doi.org/10.1016/j.rser.2020.110341
  48. Resch, A.; Höller, R. State-of-the-Art of Concentrating Photovoltaic Thermal Technology. Energies 2023, 16, 3821. DOI: https://doi.org/10.3390/en16093821
  49. Javidan, M.; Moghadam, A.J. Effective cooling of a photovoltaic module using jet-impingement array and nanofluid coolant. Int. Commun. Heat Mass Transf. 2022, 137, 106310. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106310
  50. Kiran, M.; Arunachala, U.C.; Varun, K. Effective thermal management of photovoltaic modules equipped with innovative concentrating techniques. Int. J. Sustain. Eng. 2025, 18, 2484219. DOI: https://doi.org/10.1080/19397038.2025.2484219
  51. Paliwal, M.K.; Jakhar, S.; Dixit, A.; et al. Technical approaches for enhancing thermal management of hybrid photovoltaic thermal systems: emerging trends and future prospects. Int. J. Thermofluids 2025, 27, 101267. DOI: https://doi.org/10.1016/j.ijft.2025.101267
  52. Hasanuzzaman, M.; Malek, A.A.; Islam, M.M.; et al. Global advancement of cooling technologies for PV systems: A review. Sol. Energy 2016, 137, 25–45. DOI: https://doi.org/10.1016/j.solener.2016.07.010
  53. Alsaqoor, S.; Alqatamin, A.; Alahmer, A.; et al. The impact of phase change material on photovoltaic thermal (PVT) systems: A numerical study. Int. J. Thermofluids 2023, 18, 100365. DOI: https://doi.org/10.1016/j.ijft.2023.100365
  54. Fikri, M.A.; Samykano, M.; Pandey, A.K.; et al. Recent progresses and challenges in cooling techniques of concentrated photovoltaic thermal system: A review with special treatment on phase change materials (PCMs) based cooling. Sol. Energy Mater. Sol. Cells 2022, 241, 111739. DOI: https://doi.org/10.1016/j.solmat.2022.111739
  55. Awais, M.; Ullah, N.; Ahmad, J.; et al. Heat transfer and pressure drop performance of Nanofluid: A state-of- the-art review. Int. J. Thermofluids 2021, 9, 100065. DOI: https://doi.org/10.1016/j.ijft.2021.100065
  56. An, W.; Wu, J.; Zhu, T.; et al. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Appl. Energy 2016, 184, 197–206. DOI: https://doi.org/10.1016/j.apenergy.2016.10.004
  57. Yang, N.; Liu, Q.; Wang, B.; et al. A novel PV/T system integrated with spectral beam filter: A comprehensive optical and thermodynamic study. Appl. Therm. Eng. 2024, 257, 124457. DOI: https://doi.org/10.1016/j.applthermaleng.2024.124457
  58. Tunkara, E.; DeJarnette, D.; Saunders, A.E.; et al. Indium tin oxide and gold nanoparticle solar filters for concentrating photovoltaic thermal systems. Appl. Energy 2019, 252, 113459. DOI: https://doi.org/10.1016/j.apenergy.2019.113459
  59. Liang, H.; Su, R.; Huang, W.; et al. A novel spectral beam splitting photovoltaic/thermal hybrid system based on semi-transparent solar cell with serrated groove structure for co-generation of electricity and high-grade thermal energy. Energy Convers. Manag. 2022, 252, 115049. DOI: https://doi.org/10.1016/j.enconman.2021.115049
  60. Han, X.; Sun, Y.; Huang, J.; et al. Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter. Int. J. Energy Res. 2020, 44, 4837–4850. DOI: https://doi.org/10.1002/er.5277
  61. Dhamran, M.; Solyalı, D. Design of Linear Fresnel Reflector Concentrated Solar Power Plant with Molten Salt Thermal Energy Storage. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 20–22 July 2022; pp. 1–5. DOI: https://doi.org/10.1109/ICECET55527.2022.9872908
  62. Pulido-Iparraguirre, D.; Valenzuela, L.; Serrano-Aguilera, J.J.; et al. Optimized design of a Linear Fresnel reflector for solar process heat applications. Renew. Energy 2019, 131, 1089–1106. DOI: https://doi.org/10.1016/j.renene.2018.08.018
  63. Romero, M.; González-Aguilar, J. Solar thermal CSP technology. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 42–59. DOI: https://doi.org/10.1002/wene.79
  64. Castillo, P.; Correa-Jullian, C.; Calderón-Vásquez, I.; et al. Optical and Thermal Assessment of a Linear Fresnel Collector with Minichannel Absorber Tube for Medium Temperature Applications. In Proceedings of the ISES Solar World Congress 2019/IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019, Santiago, Chile, 03–07 November 2019; pp. 1–11. DOI: https://doi.org/10.18086/swc.2019.12.01
  65. García-Lara, H.D.; Delgado-Carreño, O.R.; Morales-Fuentes, A.; et al. Ray tracing method applied in the annual evaluation of reflectors integrated to an evacuated tube solar collector. J. Renew. Sustain. Energy 2022, 14, 053701. DOI: https://doi.org/10.1063/5.0097849
  66. Calise, F.; d'Accadia, M.D.; Palombo, A.; Vanoli, L. Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors. Energy 2013, 61, 72–86. DOI: https://doi.org/10.1016/j.energy.2012.10.008
  67. Mahdavi, N.; Ghaebi, H.; Minaei, A. Proposal and multi-aspect assessment of a novel solar-based trigeneration system; investigation of zeotropic mixture’s utilization. Appl. Therm. Eng. 2022, 206, 118110. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118110
  68. Gorouh, H.A.; Salmanzadeh, M.; Nasseriyan, P.; et al. Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator. Renew. Energy 2022, 181, 535–553. DOI: https://doi.org/10.1016/j.renene.2021.09.042
  69. Fuentes-Morales, R.F.; Díaz-Ponce, A.; Acosta-Pérez, E.D.; et al. Design, development, and electrical characterization of a parabolic dish photovoltaic thermal concentration system. J. Renew. Sustain. Energy 2024, 16, 063706. DOI: https://doi.org/10.1063/5.0234029
  70. Ahmed, M. Concentrated Photovoltaic Thermal System (CPVT): Dust Effect and Solution for Enhancing Efficiency in Photovoltaic Technology. Int. J. Energy Convers. 2023, 11, 225. DOI: https://doi.org/10.15866/irecon.v11i6.24463
  71. Pokorny, N.; Matuška, T. Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building. Sustainability 2020, 12, 6071. DOI: https://doi.org/10.3390/su12156071
  72. Gad, R.; Mahmoud, H.; Ookawara, S.; et al. Evaluation of thermal management of photovoltaic solar cell via hybrid cooling system of phase change material inclusion hybrid nanoparticles coupled with flat heat pipe. J. Energy Storage 2023, 57, 106185. DOI: https://doi.org/10.1016/j.est.2022.106185
  73. Hmouda, R.A.; Muzychka, Y.; Duan, X. Assessment of Concentrated Photovoltaic Thermal (CPVT) Systems Using CFD Analysis. J. Fluid Flow Heat Mass Transf. 2022, 9, 165–176. DOI: https://doi.org/10.11159/jffhmt.2022.020
  74. Mittelman, G.; Kribus, A.; Mouchtar, O.; Dayan, A. Water desalination with concentrating photovoltaic/thermal (CPVT) systems. Sol. Energy 2009, 83, 1322–1334. DOI: https://doi.org/10.1016/j.solener.2009.04.003
  75. Mukhtar, M.; Adebayo, V.; Yimen, N.; et al. Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems. Sustainability 2022, 14, 5415. DOI: https://doi.org/10.3390/su14095415
  76. Yang, F.; Wang, H.; Zhang, X.; et al. Design and experimental study of a cost-effective low concentrating photovoltaic/thermal system. Sol. Energy 2018, 160, 289–296. DOI: https://doi.org/10.1016/j.solener.2017.12.009
  77. Morin, G.; Dersch, J.; Platzer, W.; et al. Comparison of Linear Fresnel and Parabolic Trough Collector power plants. Sol. Energy 2012, 86, 1–12. DOI: https://doi.org/10.1016/j.solener.2011.06.020
  78. Savangvong, P.; Silpsakoolsook, B.; Kwankoameng, S. Design and fabrication of a solar-dish concentrator with 2-axis solar tracking system. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1137, 012008. DOI: https://doi.org/10.1088/1757-899X/1137/1/012008
  79. Rizvi, A.A.; Danish, S.N.; El-Leathy, A.; et al. A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems. Sol. Energy 2021, 218, 296–311. DOI: https://doi.org/10.1016/j.solener.2021.02.011
  80. Tagle-Salazar, P.D.; Nigam, K.D.P.; Rivera-Solorio, C. Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards. Green Process. Synth. 2020, 9, 595–649. DOI: https://doi.org/10.1515/gps-2020-0059
  81. Jiang, C.; Yu, L.; Yang, S.; et al. A Review of the Compound Parabolic Concentrator (CPC) with a Tubular Absorber. Energies 2020, 13, 695. DOI: https://doi.org/10.3390/en13030695
  82. Liu, H.; Zhang, J.; Pei, M.; et al. Optical, electrical, and thermal performance enhancement for a concentrating photovoltaic/thermal system using optimized polynomial compound parabolic concentrators. Appl. Energy 2024, 358, 122596. DOI: https://doi.org/10.1016/j.apenergy.2023.122596
  83. Ahmad, N.; Ijiro, T.; Yamada, N.; et al. Optical design of wavelength selective CPVT system with 3D/2D hybrid concentration. In Nonimaging Optics: Efficient Design for Illumination and Solar Concentration IX; Winston, R., Gordon, J.M., Eds; SPIE: Bellingham, WA, USA, 2012; pp. 185–193. DOI: https://doi.org/10.1117/12.929395
  84. Alikhan, A.H.; Kazemi, M.; Soroush, H. Enhanced performance of photovoltaic thermal module and solar thermal flat plate collector connected in series through integration with phase change materials: A comparative study. Therm. Sci. Eng. Prog. 2024, 47, 102305. DOI: https://doi.org/10.1016/j.tsep.2023.102305
  85. Karathanassis, I.K.; Papanicolaou, E.; Belessiotis, V.; et al. Multi-objective design optimization of a micro heat sink for Concentrating Photovoltaic/Thermal (CPVT) systems using a genetic algorithm. Appl. Therm. Eng. 2013, 59, 733–744. DOI: https://doi.org/10.1016/j.applthermaleng.2012.06.034
  86. Napole, C.; Derbeli, M.; Barambones, O. Fuzzy Logic Approach for Maximum Power Point Tracking Implemented in a Real Time Photovoltaic System. Appl. Sci. 2021, 11, 5927. DOI: https://doi.org/10.3390/app11135927
  87. Wang, W.; Sun, Y.; Majdi, H.S.; et al. Multi-aspect investigation and multi-criteria optimization of a novel solar-geothermal-based polygeneration system using flat plate and concentrated photovoltaic thermal solar collectors. Process Saf. Environ. Prot. 2023, 174, 485–509. DOI: https://doi.org/10.1016/j.psep.2023.03.023
  88. Rinchi, B.; Dababseh, R.; Jubran, M.; et al. Global prediction of optimal solar panel tilt angles via machine learning. Appl. Energy 2025, 382, 125322. DOI: https://doi.org/10.1016/j.apenergy.2025.125322
  89. Mughees, N.; Mughees, A.; Mughees, A.; et al. Optimizing electrical and thermal energy storage systems for hour-ahead integrated demand response in industries. Energy Rep. 2025, 13, 4441–4458. DOI: https://doi.org/10.1016/j.egyr.2025.04.008
  90. Helmers, H.; Bett, A.W.; Parisi, J.; et al. Modeling of concentrating photovoltaic and thermal systems. Prog. Photovolt. Res. Appl. 2014, 22, 427–439. DOI: https://doi.org/10.1002/pip.2287
  91. Estela. Linear Fresnel Reflector. Available online: https://estelasolar.org/techologies-plants/the-4-types-of-csp-electricity-technologies/linear-fresnel-reflector/ (accessed on 16 July 2025).
  92. Demircan, C.; Vicidomini, M.; Calise, F.; et al. Comparison of PV Power Production Estimation Methods Under Non-Homogeneous Temperature Distribution for CPVT Systems. In Prediction Techniques for Renewable Energy Generation and Load Demand Forecasting; Tomar, A., Gaur, P., Jin, X., Eds.; Lecture Notes in Electrical Engineering, Vol. 956; Springer: Singapore, 2023; pp. 77–91. DOI: https://doi.org/10.1007/978-981-19-6490-9_5
  93. Alqahtani, B.J.; Patiño-Echeverri, D. Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar. Appl. Energy 2016, 169, 927–936. DOI: https://doi.org/10.1016/j.apenergy.2016.02.083
  94. Lamnatou, C.; Chemisana, D. Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR- and UV-blocking materials. Renew. Sustain. Energy Rev. 2013, 18, 271–287. DOI: https://doi.org/10.1016/j.rser.2012.09.041
  95. Suchocki, T. Introduction to ORC–VCC Systems: A Review. Energies 2025, 18, 171. DOI: https://doi.org/10.3390/en18010171
  96. Shadmehri, M.; Abedanzadeh, A.; Shafii, M.B.; et al. Development and economic evaluation of a CPVT system with PHP cooling; An experimental study. Energy Convers. Manag. 2023, 283, 116939. DOI: https://doi.org/10.1016/j.enconman.2023.116939
  97. Alamri, Y.; Mahmoud, S.; AL-Dadah, R. Thermal Modelling of Multi-Junction Solar Cells Assembly Under Fresnel-Based Concentrator Photovoltaic/Thermal System. In Proceedings of the International Conference on Applied Energy 2019, Västerås, Sweden, 12–15 August 2019; pp. 1–5.
  98. Shoaei, M.; Moosavian, S.F.; Hajinezhad, A. 4E analysis of a concentrating photovoltaic thermal system (CPVT) with examining the effects of flow regime and concentration ratio. Energy Rep. 2022, 8, 14753–14770. DOI: https://doi.org/10.1016/j.egyr.2022.11.026
  99. Ju, X.; Xu, C.; Liao, Z.; et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Sci. Bull. 2017, 62, 1388–1426. DOI: https://doi.org/10.1016/j.scib.2017.10.002
  100. World Bank. A Sure Path to Sustainable Solar, Wind, and Geothermal. October 2022. World Bank Publications: Washington, DC, USA.
  101. Abdessadak, A.; Ghennioui, H.; Thirion-Moreau, N.; et al. Digital twin technology and artificial intelligence in energy transition: A comprehensive systematic review of applications. Energy Rep. 2025, 13, 5196–5218. DOI: https://doi.org/10.1016/j.egyr.2025.04.060
  102. Onigbajumo, A. Integration of concentrated solar thermal energy for industrial hydrogen production. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2022. DOI: https://doi.org/10.5204/thesis.eprints.235889
  103. European Commission. For every euro invested Horizon Europe generates up to €11 in economic gains. 30 April 2025. European Commission - Press release: Brussels, Belgium.
  104. TUBITAK. 2520 TÜBİTAK – General Secretariat for Research and Innovation of Greece (GSRI) Bilateral Cooperation Call is Open for Application! Available online: https://tubitak.gov.tr/en/announcement/2520-tubitak-general-secretariat-research-and-innovation-greece-gsri-bilateral-cooperation-call-open-application (accessed on 16 July 2025).
  105. TUBITAK. 2568 TÜBİTAK – CAS (China) Bilateral Cooperation Call is Open for Applications. Available online: https://tubitak.gov.tr/en/announcement/2568-tubitak-cas-china-bilateral-cooperation-call-open-applications (accessed on 16 July 2025).
  106. IEA. Renewables 2024. Analysis and forecasts to 2030. October 2024. Available online: https://www.iea.org/reports/renewables-2024 (accessed on 16 July 2025).
  107. IRENA. Strategic Investment Critical for Energy Transition Success in EU. Available online: https://www.irena.org/News/pressreleases/2025/Jun/Strategic-Investment-Critical-for-Energy-Transition-Success-in-EU (accessed on 16 July 2025).
  108. SolarPACES. CSP Projects Around the World. Available online: https://www.solarpaces.org/worldwide-csp/csp-projects-around-the-world/ (accessed on 16 July 2025).