Communication
The Influence of Nanoparticles of Graphene Oxide‑PEG on Cytokine Profile of Monocytes from Human Blood In Vitro
Downloads
- Download
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
The authors shall retain the copyright of their work but allow the Publisher to publish, copy, distribute, and convey the work.
License
Trends in Immunotherapy (TI) publishes accepted manuscripts under Creative Commons Attribution 4.0 International (CC BY 4.0). Authors who submit their papers for publication by TI agree to have the CC BY 4.0 license applied to their work, and that anyone is allowed to reuse the article or part of it free of charge for any purpose, including commercial use. As long as the author and original source are properly cited, anyone may copy, redistribute, reuse, and transform the content.
This study investigated the response of human monocytes to co-culture with pegylated (linear or branched) graphene oxide (GO) nanoparticles, specifically examing both small (P-GOs, 100 -200 nm) and larger (P-GOb, 1-5 μm) particles at concentrations of 5, 25, and 50 µg mL–1. Human monocytes (CD14+ cells) were isolated and cultured with these nanoparticles for 72 hours. We measured cell viability, lactate dehydrogenase (LDH) release, and cytokine production. The findings showed that P-GO nanoparticles had little effect on cytokine production, including MIF, GM-CSF, VEGF, IP-10, IL-8, HGF, and SCGF-beta in vitro. At a low concentration (5 μg mL–1), P-GO exhibited minimal influence on cytokines, except forthe LP-GOb variant, which increased M-CSF production. Conversely, 25 and 50 μg mL–1 of P-GO nanoparticles enhanced the release of variouscytokines, including proinflammatory IL-6, IL-1β, IL-1α, IL-18, IL-17, IL-16, IFN-γ, TNF-β, TNF-α, anti-inflammatory IL-1ra, IL-13, IL-10, IL-4, regulatory G-CSF, IL-2, IL-3, IL-5, IL-12 (p40), IL-12 (p70), M-CSF, GM-CSF and chemokines CTACK, Eotaxin, GRO-α, RANTES, MIP-1β, MCP-1, MIP-1α, MCP-3, MIG, SDF-1α, growth factors Basic FGF, PDGF-BB, SCF, and LIF and TRAIL. Although higher concentrations of P-GO nanoparticles resulted in significant cytokine production, monocyte viability remained largely unaffected . LDH release was elevated solely in samples treated with 50 μg mL–1 of LP-GOb. BP-GOs showed minimal influence on cytokine profiles, raising M-CSF levels at the highest concentration. These results indicate that modifying graphene oxide nanoparticles may hold potential for creating graphene-based pharmacological agents.
Keywords:
PEG; Graphene Oxide Nanoparticles; Monocyte; Cytokine; Chemokine; Growth FactorHighlights
Received: 25 November 2024; Revised: 3 January 2025; Accepted: 6 January 2025; Published: 17 January 2025
References
- Pandit, S.; Gaska, K.; Kádár, R.; et al. Graphene-Based Antimicrobial Biomedical Surfaces. Chemphyschem 2021, 22, 250–263. DOI: https://doi.org/10.1002/cphc.202000769
- Svadlakova, T.; Holmannova, D.; Kolackova, M.; et al. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int. J. Mol. Sci. 2022, 23, 8889. DOI: https://doi.org/10.3390/ijms23168889
- Wang, H.; Gu, W.; Xiao, N.; et al. Chlorotoxin-Conjugated Graphene Oxide for Targeted Delivery of an Anticancer Drug. Int. J. Nanomed. 2014, 9, 1433–1442. DOI: https://doi.org/10.2147/IJN.S58783
- Zhang, Y.; Nayak, T.R.; Hong, H.; et al. Graphene: A Versatile Nanoplatform for Biomedical Applications. Nanoscale 2012, 4, 3833–3842. DOI: https://doi.org/10.1039/c2nr31040f
- Kim, J.; Park, S.J.; Min, D.H. Emerging Approaches for Graphene Oxide Biosensor. Anal. Chem. 2017, 89, 232–248. DOI: https://doi.org/10.1021/acs.analchem.6b04248
- Lin. J.; Chen, X.; Huang, P. Graphene-Based Nanomaterials for Bioimaging. Adv. Drug Deliv. Rev. 2016, 105, 242–254. DOI: https://doi.org/10.1016/j.addr.2016.05.013
- Asadi, M.; Ghorbani, S.H.; Mahdavian, L.; et al. Graphene-Based Hybrid Composites for Cancer Diagnostic and Therapy. J. Transl. Med. 2024, 22, 611. DOI: https://doi.org/10.1186/s12967-024-05438-7
- Hoseini-Ghahfarokhi, M.; Mirkiani, S.; Mozaffari, N.; et al. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int. J. Nanomed. 2020, 15, 9469–9496. DOI: https://doi.org/10.2147/IJN.S265876
- Park, E.J.; Lee, S.J.; Lee, K.; et al. Pulmonary Persistence of Graphene Nanoplatelets May Disturb Physiological and Immunological Homeostasis. J. Appl. Toxicol. 2017, 37, 296–309. DOI: https://doi.org/10.1002/jat.3361
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; et al. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. DOI: https://doi.org/10.1016/j.nantod.2015.06.006
- Makharza, S.; Cirillo, G.; Bachmatiuk, A.; et al. Graphene Oxide-Based Drug Delivery Vehicles: Functionalization, Characterization, and Cytotoxicity Evaluation. J. Nanopart. Res. 2013, 15, 2099. DOI: https://doi.org/10.1007/s11051-013-2099-y
- Singh, D.P.; Herrera, C.E.; Singh, B.; et al. Graphene Oxide: An Efficient Material and Recent Approach for Biotechnological and Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 86, 173–197. DOI: https://doi.org/10.1016/j.msec.2018.01.004
- Khramtsov, P.; Bochkova, M.; Timganova, V.; et al. Interaction of Graphene Oxide Modified with Linear and Branched PEG with Monocytes Isolated from Human Blood. Nanomaterials 2021, 12, 126. DOI: https://doi.org/10.3390/nano12010126
- Uzhviyuk, S.; Bochkova, M.; Timganova, V.; et al. PEGylated Graphene Oxide and Monocyte Metabolism. AIP Conf. Proc. 2024, 2924, 050005. DOI: https://doi.org/10.1063/5.0182629
- Mukherjee, S.P.; Bottini, M.; Fadeel, B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 2017, 8, 673. DOI: https://doi.org/10.3389/fimmu.2017.00673
- Tang, J.; Cheng, W.; Gao, J.; et al. Occupational Exposure to Carbon Black Nanoparticles Increases Inflammatory Vascular Disease Risk: An Implication of an ex Vivo Biosensor Assay. Part. Fibre Toxicol. 2020, 17. DOI: https://doi.org/10.1186/s12989-020-00378-8
- Di Ianni, E.; Møller, P.; Vogel, U.B.; et al. Pro-Inflammatory Response and Genotoxicity Caused by Clay and Graphene Nanomaterials in A549 and THP-1 Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 872, 503405. DOI: https://doi.org/10.1016/j.mrgentox.2021.503405
- Kinaret, P.A.S.; Scala, G.; Federico, A.; et al. Carbon Nanomaterials Promote M1/M2 Macrophage Activation. Small 2020, 16, 1907609. DOI: https://doi.org/10.1002/smll.201907609
- Aventaggiato, M.; Valentini, F.; Caissutti, D.; et al. Biological Effects of Small Sized Graphene Oxide Nanosheets on Human Leukocytes. Biomedicines 2024, 12, 256. DOI: https://doi.org/10.3390/biomedicines12020256
- Cebadero-Dominguez, Ó.; Casas-Rodríguez, A.; Puerto, M.; et al. In Vitro Safety Assessment of Reduced Graphene Oxide in Human Monocytes and T Cells. Environ. Res. 2023, 232, 116356. DOI: https://doi.org/10.1016/j.envres.2023.116356
- Yan, J.; Chen, L.; Huang, C.C.; et al. Consecutive Evaluation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets Immunotoxicity on Monocytes. Colloids Surf. B. Biointerfaces. 2017, 153, 300–309. DOI: https://doi.org/10.1016/j.colsurfb.2017.02.036
- Longhin, E.M.; El Yamani, N.; Rundén-Pran, E.; et al. The Alamar Blue Assay in the Context of Safety Testing of Nanomaterials. Front. Toxicol. 2022, 4, 981701. DOI: https://doi.org/10.3389/ftox.2022.981701
- Feng, Y.; Xiong, Y.; Qiao, T.; et al. Lactate Dehydrogenase A: A Key Player in Carcinogenesis and Potential Target in Cancer Therapy. Cancer Med. 2018, 7, 6124–6136. DOI: https://doi.org/10.1002/cam4.1820
- Kregielewski, K.; Fraczek, W.; Grodzik, M. Graphene Oxide Enhanced Cisplatin Cytotoxic Effect in Glioblastoma and Cervical Cancer. Molecules 2023, 28, 6253. DOI: https://doi.org/10.3390/molecules28176253
- Yan, L.; Wang, Y.; Xu, X.; et al. Can Graphene Oxide Cause Damage to Eyesight? Chem. Res. Toxicol. 2012, 25, 1265–1270. DOI: https://doi.org/10.1021/tx300129f
- Wójcik, B.; Zawadzka, K.; Sawosz, E.; et al. Cell Line-Dependent Adhesion and Inhibition of Proliferation on Carbon-Based Nanofilms. Nanotechnol. Sci. Appl. 2023, 16, 41–57. DOI: https://doi.org/10.2147/NSA.S439185
- Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; et al. Differential Cytotoxicity of Different Sizes of Graphene Oxide Nanoparticles in Leydig (TM3) and Sertoli (TM4) Cells. Nanomaterials 2019, 9, 139. DOI: https://doi.org/10.3390/nano9020139
- Choi, Y.J.; Kim, E.; Han, J.; et al. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent. Molecules 2016, 21, 375. DOI: https://doi.org/10.3390/molecules21030375
- Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; et al. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Int. J. Mol. Sci. 2019, 20, 247. DOI: https://doi.org/10.3390/ijms20020247
- Gurunathan, S.; Arsalan Iqbal, M.; Qasim, M.; et al. Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells. Nanomaterials 2019, 9, 969. DOI: https://doi.org/10.3390/nano9070969
- Zhang, J.; Cao, H.Y.; Wang, J.Q.; et al. Graphene Oxide and Reduced Graphene Oxide Exhibit Cardiotoxicity Through the Regulation of Lipid Peroxidation, Oxidative Stress, and Mitochondrial Dysfunction. Front. Cell Dev. Biol. 2021, 9, 616888. DOI: https://doi.org/10.3389/fcell.2021.616888
- Chen, W.; Wang, B.; Liang, S.; et al. Understanding the Role of the Lateral Dimensional Property of Graphene Oxide on Its Interactions with Renal Cells. Molecules 2022, 27, 7956. DOI: https://doi.org/10.3390/molecules27227956
- Ma, Y.; Wang, J.; Wu, J.; et al. Meta-Analysis of Cellular Toxicity for Graphene via Data-Mining the Literature and Machine Learning. Sci. Total Environ. 2021, 793, 148532. DOI: https://doi.org/10.1016/j.scitotenv.2021.148532
- Farrera, C., Fadeel, B. It Takes Two to Tango: Understanding the Interactions between Engineered Nanomaterials and the Immune system. Eur. J. Pharm. Biopharm. 2015, 95, 3–12. DOI: https://doi.org/10.1016/j.ejpb.2015.03.007
- Luo, N.; Weber, J.K.; Wang, S.; et al. PEGylated Graphene Oxide Elicits Strong Immunological Responses despite Surface Passivation. Nat. Commun. 2017, 8, 14537. DOI: https://doi.org/10.1038/ncomms14537
- Fusco, L.; Avitabile, E.; Armuzza, V.; et al. Impact of the surface functionalization on nanodiamond biocompatibility: A comprehensive view on human blood immune cells. Carbon. 2020, 160, 390–404. DOI: https://doi.org/10.1016/j.carbon.2020.01.003
- Knötigová, P.T.; Mašek, J.; Hubatka, F.; et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol. Pharm. 2019, 16, 3441–3451. DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00225
- Kong, C.; Chen, J.; Li, P.; et al. Respiratory Toxicology of Graphene-Based Nanomaterials: A Review. Toxics 2024, 12, 82. DOI: https://doi.org/10.3390/toxics12010082
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383(23), 2255–2273. DOI: https://doi.org/10.1056/NEJMra2026131
- Vallhov, H.; Qin, J.; Johansson, S.M.; et al. The Importance of an Endotoxin-Free Environment during the Production of Nanoparticles Used in Medical Applications. Nano Lett. 2006, 6, 1682–1686. DOI: https://doi.org/10.1021/nl060860z
- Oostingh, G.J.; Casals, E.; Italiani, P.; et al. Problems and Challenges in the Development and Validation of Human Cell-Based Assays to Determine Nanoparticle-Induced Immunomodulatory Effects. Part. Fibre Toxicol. 2011, 8, 8. DOI: https://doi.org/10.1186/1743-8977-8-8
- Mukherjee, S.P.; Kostarelos, K.; Fadeel, B. Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: Size-Independent NLRP3 Inflammasome Activation. Adv. Healthc. Mater. 2018, 7, 1700815. DOI: https://doi.org/10.1002/adhm.201700815
- Orecchioni, M.; Bedognetti, D.; Newman, L.; et al. Single-Cell Mass Cytometry and Transcriptome Profiling Reveal the Impact of Graphene on Human Immune Cells. Nat. Commun. 2017, 8, 1109. DOI: https://doi.org/10.1038/s41467-017-01015-3