Trends in Immunotherapy

Communication

The Influence of Nanoparticles of Graphene Oxide‑PEG on Cytokine Profile of Monocytes from Human Blood In Vitro

Downloads

D.I., U., M.S., B., V.P., T., K.Yu, S., S.A., Z., & M.B., R. (2025). The Influence of Nanoparticles of Graphene Oxide‑PEG on Cytokine Profile of Monocytes from Human Blood In Vitro. Trends in Immunotherapy, 9(1), 8–22. https://doi.org/10.54963/ti.v9i1.882

Authors

  • Usanina D.I.
    Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, 614081, Russia; Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Perm, 614068, Russia https://orcid.org/0000-0003-0436-0890
  • Bochkova M.S. Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, 614081, Russia; Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Perm, 614068, Russia https://orcid.org/0000-0001-5784-6224
  • Timganova V.P. Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, 614081, Russia https://orcid.org/0000-0003-4581-1969
  • Shardina K.Yu Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, 614081, Russia https://orcid.org/0000-0001-5474-8450
  • Zamorina S.A. Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, 614081, Russia; Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Perm, 614068, Russia https://orcid.org/0000-0002-6474-1487
  • Rayev M.B. Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Perm, 614081, Russia; Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Perm, 614068, Russia https://orcid.org/0000-0001-6882-4928

This study investigated the response of human monocytes to co-culture with pegylated (linear or branched) graphene oxide (GO) nanoparticles, specifically examing both small (P-GOs, 100 -200 nm) and larger (P-GOb, 1-5 μm) particles at concentrations of 5, 25, and 50 µg mL–1. Human monocytes (CD14+ cells) were isolated and cultured with these nanoparticles for 72 hours. We measured cell viability, lactate dehydrogenase (LDH) release, and cytokine production. The findings showed that P-GO nanoparticles had little effect on  cytokine production, including MIF, GM-CSF, VEGF, IP-10, IL-8, HGF, and SCGF-beta in vitro. At a low concentration (5 μg mL1),  P-GO exhibited minimal influence on cytokines, except forthe LP-GOb variant, which increased M-CSF production. Conversely, 25 and 50 μg mL1 of P-GO nanoparticles enhanced the release of variouscytokines, including proinflammatory IL-6, IL-1β, IL-1α, IL-18, IL-17, IL-16, IFN-γ, TNF-β, TNF-α, anti-inflammatory IL-1ra, IL-13, IL-10, IL-4, regulatory  G-CSF, IL-2, IL-3, IL-5, IL-12 (p40), IL-12 (p70), M-CSF, GM-CSF and chemokines CTACK, Eotaxin, GRO-α, RANTES, MIP-1β, MCP-1, MIP-1α, MCP-3, MIG, SDF-1α, growth factors Basic FGF, PDGF-BB, SCF, and LIF and TRAIL. Although higher concentrations of P-GO nanoparticles resulted in significant cytokine production, monocyte viability remained largely unaffected . LDH release was elevated solely in samples treated with 50 μg mL1 of LP-GOb. BP-GOs showed minimal influence on cytokine profiles, raising M-CSF levels at the highest concentration. These results indicate that modifying graphene oxide nanoparticles may hold potential for creating graphene-based pharmacological agents.

Keywords:

PEG; Graphene Oxide Nanoparticles; Monocyte; Cytokine; Chemokine; Growth Factor

Highlights

Received: 25 November 2024; Revised: 3 January 2025; Accepted: 6 January 2025; Published: 17 January 2025

References

  1. Pandit, S.; Gaska, K.; Kádár, R.; et al. Graphene-Based Antimicrobial Biomedical Surfaces. Chemphyschem 2021, 22, 250–263. DOI: https://doi.org/10.1002/cphc.202000769
  2. Svadlakova, T.; Holmannova, D.; Kolackova, M.; et al. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int. J. Mol. Sci. 2022, 23, 8889. DOI: https://doi.org/10.3390/ijms23168889
  3. Wang, H.; Gu, W.; Xiao, N.; et al. Chlorotoxin-Conjugated Graphene Oxide for Targeted Delivery of an Anticancer Drug. Int. J. Nanomed. 2014, 9, 1433–1442. DOI: https://doi.org/10.2147/IJN.S58783
  4. Zhang, Y.; Nayak, T.R.; Hong, H.; et al. Graphene: A Versatile Nanoplatform for Biomedical Applications. Nanoscale 2012, 4, 3833–3842. DOI: https://doi.org/10.1039/c2nr31040f
  5. Kim, J.; Park, S.J.; Min, D.H. Emerging Approaches for Graphene Oxide Biosensor. Anal. Chem. 2017, 89, 232–248. DOI: https://doi.org/10.1021/acs.analchem.6b04248
  6. Lin. J.; Chen, X.; Huang, P. Graphene-Based Nanomaterials for Bioimaging. Adv. Drug Deliv. Rev. 2016, 105, 242–254. DOI: https://doi.org/10.1016/j.addr.2016.05.013
  7. Asadi, M.; Ghorbani, S.H.; Mahdavian, L.; et al. Graphene-Based Hybrid Composites for Cancer Diagnostic and Therapy. J. Transl. Med. 2024, 22, 611. DOI: https://doi.org/10.1186/s12967-024-05438-7
  8. Hoseini-Ghahfarokhi, M.; Mirkiani, S.; Mozaffari, N.; et al. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int. J. Nanomed. 2020, 15, 9469–9496. DOI: https://doi.org/10.2147/IJN.S265876
  9. Park, E.J.; Lee, S.J.; Lee, K.; et al. Pulmonary Persistence of Graphene Nanoplatelets May Disturb Physiological and Immunological Homeostasis. J. Appl. Toxicol. 2017, 37, 296–309. DOI: https://doi.org/10.1002/jat.3361
  10. Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; et al. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. DOI: https://doi.org/10.1016/j.nantod.2015.06.006
  11. Makharza, S.; Cirillo, G.; Bachmatiuk, A.; et al. Graphene Oxide-Based Drug Delivery Vehicles: Functionalization, Characterization, and Cytotoxicity Evaluation. J. Nanopart. Res. 2013, 15, 2099. DOI: https://doi.org/10.1007/s11051-013-2099-y
  12. Singh, D.P.; Herrera, C.E.; Singh, B.; et al. Graphene Oxide: An Efficient Material and Recent Approach for Biotechnological and Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 86, 173–197. DOI: https://doi.org/10.1016/j.msec.2018.01.004
  13. Khramtsov, P.; Bochkova, M.; Timganova, V.; et al. Interaction of Graphene Oxide Modified with Linear and Branched PEG with Monocytes Isolated from Human Blood. Nanomaterials 2021, 12, 126. DOI: https://doi.org/10.3390/nano12010126
  14. Uzhviyuk, S.; Bochkova, M.; Timganova, V.; et al. PEGylated Graphene Oxide and Monocyte Metabolism. AIP Conf. Proc. 2024, 2924, 050005. DOI: https://doi.org/10.1063/5.0182629
  15. Mukherjee, S.P.; Bottini, M.; Fadeel, B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 2017, 8, 673. DOI: https://doi.org/10.3389/fimmu.2017.00673
  16. Tang, J.; Cheng, W.; Gao, J.; et al. Occupational Exposure to Carbon Black Nanoparticles Increases Inflammatory Vascular Disease Risk: An Implication of an ex Vivo Biosensor Assay. Part. Fibre Toxicol. 2020, 17. DOI: https://doi.org/10.1186/s12989-020-00378-8
  17. Di Ianni, E.; Møller, P.; Vogel, U.B.; et al. Pro-Inflammatory Response and Genotoxicity Caused by Clay and Graphene Nanomaterials in A549 and THP-1 Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 872, 503405. DOI: https://doi.org/10.1016/j.mrgentox.2021.503405
  18. Kinaret, P.A.S.; Scala, G.; Federico, A.; et al. Carbon Nanomaterials Promote M1/M2 Macrophage Activation. Small 2020, 16, 1907609. DOI: https://doi.org/10.1002/smll.201907609
  19. Aventaggiato, M.; Valentini, F.; Caissutti, D.; et al. Biological Effects of Small Sized Graphene Oxide Nanosheets on Human Leukocytes. Biomedicines 2024, 12, 256. DOI: https://doi.org/10.3390/biomedicines12020256
  20. Cebadero-Dominguez, Ó.; Casas-Rodríguez, A.; Puerto, M.; et al. In Vitro Safety Assessment of Reduced Graphene Oxide in Human Monocytes and T Cells. Environ. Res. 2023, 232, 116356. DOI: https://doi.org/10.1016/j.envres.2023.116356
  21. Yan, J.; Chen, L.; Huang, C.C.; et al. Consecutive Evaluation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets Immunotoxicity on Monocytes. Colloids Surf. B. Biointerfaces. 2017, 153, 300–309. DOI: https://doi.org/10.1016/j.colsurfb.2017.02.036
  22. Longhin, E.M.; El Yamani, N.; Rundén-Pran, E.; et al. The Alamar Blue Assay in the Context of Safety Testing of Nanomaterials. Front. Toxicol. 2022, 4, 981701. DOI: https://doi.org/10.3389/ftox.2022.981701
  23. Feng, Y.; Xiong, Y.; Qiao, T.; et al. Lactate Dehydrogenase A: A Key Player in Carcinogenesis and Potential Target in Cancer Therapy. Cancer Med. 2018, 7, 6124–6136. DOI: https://doi.org/10.1002/cam4.1820
  24. Kregielewski, K.; Fraczek, W.; Grodzik, M. Graphene Oxide Enhanced Cisplatin Cytotoxic Effect in Glioblastoma and Cervical Cancer. Molecules 2023, 28, 6253. DOI: https://doi.org/10.3390/molecules28176253
  25. Yan, L.; Wang, Y.; Xu, X.; et al. Can Graphene Oxide Cause Damage to Eyesight? Chem. Res. Toxicol. 2012, 25, 1265–1270. DOI: https://doi.org/10.1021/tx300129f
  26. Wójcik, B.; Zawadzka, K.; Sawosz, E.; et al. Cell Line-Dependent Adhesion and Inhibition of Proliferation on Carbon-Based Nanofilms. Nanotechnol. Sci. Appl. 2023, 16, 41–57. DOI: https://doi.org/10.2147/NSA.S439185
  27. Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; et al. Differential Cytotoxicity of Different Sizes of Graphene Oxide Nanoparticles in Leydig (TM3) and Sertoli (TM4) Cells. Nanomaterials 2019, 9, 139. DOI: https://doi.org/10.3390/nano9020139
  28. Choi, Y.J.; Kim, E.; Han, J.; et al. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent. Molecules 2016, 21, 375. DOI: https://doi.org/10.3390/molecules21030375
  29. Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; et al. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Int. J. Mol. Sci. 2019, 20, 247. DOI: https://doi.org/10.3390/ijms20020247
  30. Gurunathan, S.; Arsalan Iqbal, M.; Qasim, M.; et al. Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells. Nanomaterials 2019, 9, 969. DOI: https://doi.org/10.3390/nano9070969
  31. Zhang, J.; Cao, H.Y.; Wang, J.Q.; et al. Graphene Oxide and Reduced Graphene Oxide Exhibit Cardiotoxicity Through the Regulation of Lipid Peroxidation, Oxidative Stress, and Mitochondrial Dysfunction. Front. Cell Dev. Biol. 2021, 9, 616888. DOI: https://doi.org/10.3389/fcell.2021.616888
  32. Chen, W.; Wang, B.; Liang, S.; et al. Understanding the Role of the Lateral Dimensional Property of Graphene Oxide on Its Interactions with Renal Cells. Molecules 2022, 27, 7956. DOI: https://doi.org/10.3390/molecules27227956
  33. Ma, Y.; Wang, J.; Wu, J.; et al. Meta-Analysis of Cellular Toxicity for Graphene via Data-Mining the Literature and Machine Learning. Sci. Total Environ. 2021, 793, 148532. DOI: https://doi.org/10.1016/j.scitotenv.2021.148532
  34. Farrera, C., Fadeel, B. It Takes Two to Tango: Understanding the Interactions between Engineered Nanomaterials and the Immune system. Eur. J. Pharm. Biopharm. 2015, 95, 3–12. DOI: https://doi.org/10.1016/j.ejpb.2015.03.007
  35. Luo, N.; Weber, J.K.; Wang, S.; et al. PEGylated Graphene Oxide Elicits Strong Immunological Responses despite Surface Passivation. Nat. Commun. 2017, 8, 14537. DOI: https://doi.org/10.1038/ncomms14537
  36. Fusco, L.; Avitabile, E.; Armuzza, V.; et al. Impact of the surface functionalization on nanodiamond biocompatibility: A comprehensive view on human blood immune cells. Carbon. 2020, 160, 390–404. DOI: https://doi.org/10.1016/j.carbon.2020.01.003
  37. Knötigová, P.T.; Mašek, J.; Hubatka, F.; et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol. Pharm. 2019, 16, 3441–3451. DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00225
  38. Kong, C.; Chen, J.; Li, P.; et al. Respiratory Toxicology of Graphene-Based Nanomaterials: A Review. Toxics 2024, 12, 82. DOI: https://doi.org/10.3390/toxics12010082
  39. Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383(23), 2255–2273. DOI: https://doi.org/10.1056/NEJMra2026131
  40. Vallhov, H.; Qin, J.; Johansson, S.M.; et al. The Importance of an Endotoxin-Free Environment during the Production of Nanoparticles Used in Medical Applications. Nano Lett. 2006, 6, 1682–1686. DOI: https://doi.org/10.1021/nl060860z
  41. Oostingh, G.J.; Casals, E.; Italiani, P.; et al. Problems and Challenges in the Development and Validation of Human Cell-Based Assays to Determine Nanoparticle-Induced Immunomodulatory Effects. Part. Fibre Toxicol. 2011, 8, 8. DOI: https://doi.org/10.1186/1743-8977-8-8
  42. Mukherjee, S.P.; Kostarelos, K.; Fadeel, B. Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: Size-Independent NLRP3 Inflammasome Activation. Adv. Healthc. Mater. 2018, 7, 1700815. DOI: https://doi.org/10.1002/adhm.201700815
  43. Orecchioni, M.; Bedognetti, D.; Newman, L.; et al. Single-Cell Mass Cytometry and Transcriptome Profiling Reveal the Impact of Graphene on Human Immune Cells. Nat. Commun. 2017, 8, 1109. DOI: https://doi.org/10.1038/s41467-017-01015-3