Toll-like Receptors and Periodontitis: Current Insights into Immune Dynamics and Translational Therapeutics

Trends in Immunotherapy

Review Article

Toll-like Receptors and Periodontitis: Current Insights into Immune Dynamics and Translational Therapeutics

Liew, F. F., Tan, S. H., Sengupta, P., & Dutta, S. (2026). Toll-like Receptors and Periodontitis: Current Insights into Immune Dynamics and Translational Therapeutics. Trends in Immunotherapy, 10(1), 13–42. https://doi.org/10.54963/ti.v10i1.1428

Authors

  • Fong Fong Liew

    Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
  • Soon Hao Tan

    Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • Pallav Sengupta

    Department of Biomedical Sciences, College of Medicine, Gulf Medical University, 4184 Ajman, United Arab Emirates
  • Sulagna Dutta

    Basic Medical Sciences Department, College of Medicine, Ajman University, 4184 Ajman, United Arab Emirates

Received: 22 July 2025; Revised: 31 July 2025; Accepted: 14 August 2025; Published: 7 January 2026

Periodontitis is a common and persistent inflammatory disease resulting from a sophisticated relationship between oral bacteria and the body's immune system. Toll-like receptors (TLRs) act as crucial sensors within the immune response, playing a fundamental role in the disease's initiation and progression. This review examines periodontitis, highlighting the limited understanding of TLR activation mechanisms and the therapeutic potential of TLR inhibitors. The discussion begins with a definition of TLRs, outlining their characteristics, types, distribution, and activation mechanisms. It then details the manifestation of TLRs in periodontitis, including alterations during inflammation and their correlation with disease severity. TLR activity is influenced not only by microbial stimuli but also by epigenetic factors and miRNAs, which mediate gene expression changes linked to inflammation. Various miRNAs have been shown to regulate TLR signaling pathways, thereby modulating the inflammatory response in periodontal tissues. Additionally, epigenetic modifications further complicate the landscape of immune regulation in periodontitis, affecting TLR expression and function. This interplay between TLRs, miRNAs, and epigenetic changes underscores the systemic implications of periodontal disease, contributing to broader health issues. Consequently, the review explores innovative strategies to modulate TLR signaling and discusses future challenges in TLR research in relation to periodontitis treatment. In summary, a more profound understanding of TLR-driven immune responses, along with the regulatory roles of miRNAs and epigenetic factors, is essential for developing targeted therapies and advancing treatment options for periodontitis.

Keywords:

Inflammation Pathogen-Associated Molecular Patterns Periodontitis Toll-Like Receptors TLR2 TLR4

References

  1. Bhuyan, R.; Bhuyan, S.K.; Mohanty, J.N.; et al. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022, 10, 2659.
  2. Paul, O.; Arora, P.; Mayer, M.; et al. Inflammation in Periodontal Disease: Possible Link to Vascular Disease. Front. Physiol. 2021, 11, 609614.
  3. Eke, P.I.; Dye, B.; Wei, L.; et al. Prevalence of Periodontitis in Adults in the United States: 2009 and 2010. J. Dent. Res. 2012, 91, 914–920.
  4. Martínez-García, M.; Hernández-Lemus, E. Periodontal Inflammation and Systemic Diseases: An Overview. Front. Physiol. 2021, 12, 709438.
  5. Balta, M.G.; Loos, B.G.; Nicu, E.A. Emerging Concepts in the Resolution of Periodontal Inflammation: A Role for Resolvin E1. Front. Immunol. 2017, 8, 1682.
  6. Ray, R.R. Periodontitis: An Oral Disease with Severe Consequences. Appl. Biochem. Biotechnol. 2023, 195, 17–32.
  7. Noor, S.; Gasmi, A. Porphyromonas Gingivalis in the Development of Periodontitis: Impact on Dysbiosis and Inflammation. Arch. Razi Inst. 2022, 77, 1539–1551.
  8. Hoare, A.; Soto, C.; Rojas-Celis, V.; et al. Chronic Inflammation as a Link Between Periodontitis and Carcinogenesis. Mediators Inflamm. 2019, 2019, 1029857.
  9. Abusleme, L.; Dupuy, A.K.; Dutzan, N.; et al. The Subgingival Microbiome in Health and Periodontitis and Its Relationship with Community Biomass and Inflammation. ISME J. 2013, 7, 1016–1025.
  10. Darveau, R.P. Periodontitis: A Polymicrobial Disruption of Host Homeostasis. Nat. Rev. Microbiol. 2010, 8, 481–490.
  11. Bassani, B.; Cucchiara, M.; Butera, A.; et al. Neutrophils’ Contribution to Periodontitis and Periodontitis-Associated Cardiovascular Diseases. Int. J. Mol. Sci. 2023, 24, 15370.
  12. Fox, S.; Leitch, A.E.; Duffin, R.; et al. Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease. J. Innate Immun. 2010, 2, 216–227.
  13. Wallet, S.M.; Puri, V.; Gibson, F.C. Linkage of Infection to Adverse Systemic Complications: Periodontal Disease, Toll-Like Receptors, and Other Pattern Recognition Systems. Vaccines 2018, 6, 21.
  14. Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820.
  15. Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801.
  16. Cai, X.; Chiu, Y.H.; Chen, Z.J. The cGAS-cGAMP-STING Pathway of Cytosolic DNA Sensing and Signaling. Mol. Cell 2014, 54, 289–296.
  17. Iwasaki, A.; Medzhitov, R. Toll-Like Receptor Control of the Adaptive Immune Responses. Nat. Immunol. 2004, 5, 987–995.
  18. Hayden, M.S.; Ghosh, S. NF-κB in Immunobiology. Cell Res. 2011, 21, 223–244.
  19. Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461.
  20. Duan, T.; Du, Y.; Xing, C.; et al. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774.
  21. Hajishengallis, G.; Darveau, R.P.; Curtis, M.A. The Keystone-Pathogen Hypothesis. Nat. Rev. Microbiol. 2012, 10, 717–725.
  22. Shin, H.; Zhang, Y.; Jagannathan, M.; et al. B Cells from Periodontal Disease Patients Express Surface Toll-Like Receptor 4. J. Leukoc. Biol. 2009, 85, 648–655.
  23. Taubman, M.A.; Valverde, P.; Han, X.; et al. Immune Response: The Key to Bone Resorption in Periodontal Disease. J. Periodontol. 2005, 76, 2033–2041.
  24. Scapini, P.; Cassatella, M.A. Social Networking of Human Neutrophils within the Immune System. Blood 2014, 124, 710–719.
  25. Pillay, J.; Kamp, V.M.; Van Hoffen, E.; et al. A Subset of Neutrophils in Human Systemic Inflammation Inhibits T Cell Responses through Mac-1. J. Clin. Invest. 2012, 122, 327–336.
  26. Puga, I.; Cols, M.; Barra, C.M.; et al. B Cell–Helper Neutrophils Stimulate the Diversification and Production of Immunoglobulin in the Marginal Zone of the Spleen. Nat. Immunol. 2012, 13, 170–180.
  27. Camous, L.; Roumenina, L.; Bigot, S.; et al. Complement Alternative Pathway Acts as a Positive Feedback Amplification of Neutrophil Activation. Blood 2011, 117, 1340–1349.
  28. Dababneh, R.; Al-Wahadneh, A.M.; Hamadneh, S.; et al. Periodontal Manifestation of Leukocyte Adhesion Deficiency Type I. J. Periodontol. 2008, 79, 764–768.
  29. Moutsopoulos, N.M.; Konkel, J.; Sarmadi, M.; et al. Defective Neutrophil Recruitment in Leukocyte Adhesion Deficiency Type I Disease Causes Local IL-17–Driven Inflammatory Bone Loss. Sci. Transl. Med. 2014, 6, 229ra40.
  30. Gu, Y.; Han, X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int. J. Mol. Sci. 2020, 21, 3329.
  31. Yin, L.; Li, X.; Hou, J. Macrophages in Periodontitis: A Dynamic Shift between Tissue Destruction and Repair. Jpn. Dent. Sci. Rev. 2022, 58, 336–347.
  32. Li, D.; Wu, M. Pattern Recognition Receptors in Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 291.
  33. El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-Like Receptors Activation, Signaling, and Targeting: An Overview. Bull. Natl. Res. Cent. 2019, 43, 187.
  34. Kawai, T.; Akira, S. The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. Int. Immunol. 2009, 21, 317–337.
  35. Zhang, G.; Ghosh, S. Toll-Like Receptor-Mediated NF-κB Activation: A Phylogenetically Conserved Paradigm in Innate Immunity. J. Clin. Invest. 2001, 107, 13–19.
  36. Sitamahalakshmi, K.; Krishnakumar, G. Toll-Like Receptors in Periodontal Health and Disease. Int. J. Appl. Dent. Sci. 2022, 84, 148–157.
  37. Mielcarska, M.B.; Bossowska-Nowicka, M.; Toka, F.N. Cell Surface Expression of Endosomal Toll-Like Receptors—A Necessity or a Superfluous Duplication? Front. Immunol. 2021, 11, 620972.
  38. Kim, Y.M.; Brinkmann, M.M.; Paquet, M.E.; et al. UNC93B1 Delivers Nucleotide-Sensing Toll-Like Receptors to Endolysosomes. Nature 2008, 452, 234–238.
  39. Kang, J.Y.; Lee, J.O. Structural Biology of the Toll-Like Receptor Family. Annu. Rev. Biochem. 2011, 80, 917–941.
  40. Areal, H.; Abrantes, J.; Esteves, P.J. Signatures of Positive Selection in Toll-Like Receptor (TLR) Genes in Mammals. BMC Evol. Biol. 2011, 11, 368.
  41. Wolff, H.; Anderson, D.J. Immunohistologic Characterization and Quantitation of Leukocyte Subpopulations in Human Semen. Fertil. Steril. 1988, 49, 497–504.
  42. Sameer, A.S.; Nissar, S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. Biomed. Res. Int. 2021, 2021, 1–10.
  43. Fuchsberger, M.; Hochrein, H.; O’Keeffe, M. Activation of Plasmacytoid Dendritic Cells. Immunol. Cell Biol. 2005, 83, 571–577.
  44. Honda, K.; Yanai, H.; Mizutani, T.; et al. Role of a Transductional-Transcriptional Processor Complex Involving MyD88 and IRF-7 in Toll-Like Receptor Signaling. Proc. Natl. Acad. Sci. 2004, 101, 15416–15421.
  45. Mbongue, J.; Nicholas, D.; Firek, A.; et al. The Role of Dendritic Cells in Tissue-Specific Autoimmunity. J. Immunol. Res. 2014, 2014, 857143.
  46. Mnich, S.J.; Blanner, P.M.; Hu, L.G.; et al. Critical Role for Apoptosis Signal-Regulating Kinase 1 in the Development of Inflammatory K/BxN Serum-Induced Arthritis. Int. Immunopharmacol. 2010, 10, 1170–1176.
  47. Roquilly, A.; McWilliam, H.E.; Jacqueline, C.; et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity 2017, 47, 135–147.
  48. Hochrein, H.; O’Keeffe, M.; Wagner, H. Human and Mouse Plasmacytoid Dendritic Cells. Hum. Immunol. 2002, 63, 1103–1110.
  49. Born, W.K.; Reardon, C.L.; O’Brien, R.L. The Function of γδ T Cells in Innate Immunity. Curr. Opin. Immunol. 2006, 18, 31–38.
  50. Galley, H.F.; Lowes, D.A.; Thompson, K.; et al. Characterisation of Gamma Delta (γδ) T Cell Populations in Patients with Sepsis. Cell Biol. Int. 2015, 39, 210–216.
  51. Wesch, D.; Peters, C.; Oberg, H.H.; et al. Modulation of γδ T Cell Responses by TLR Ligands. Cell. Mol. Life Sci. 2011, 68, 2357–2370.
  52. Wesch, D.; Beetz, S.; Oberg, H.H.; et al. Direct Costimulatory Effect of TLR3 Ligand Poly(I:C) on Human γδ T Lymphocytes. J. Immunol. 2006, 176, 1348–1354.
  53. Pietschmann, K.; Beetz, S.; Welte, S.; et al. Toll-Like Receptor Expression and Function in Subsets of Human γδ T Lymphocytes. Scand. J. Immunol. 2009, 70, 245–255.
  54. Deetz, C.O.; Hebbeler, A.M.; Propp, N.A.; et al. Gamma Interferon Secretion by Human Vγ2Vδ2 T Cells after Stimulation with Antibody against the T-Cell Receptor plus the Toll-Like Receptor 2 Agonist Pam3Cys. Infect. Immun. 2006, 74, 4505–4511.
  55. Hedges, J.F.; Lubick, K.J.; Jutila, M.A. Gamma Delta T Cells Respond Directly to Pathogen-Associated Molecular Patterns. J. Immunol. 2005, 174, 6045–6053.
  56. Hotchkiss, R.S.; Osmon, S.B.; Chang, K.C.; et al. Accelerated Lymphocyte Death in Sepsis Occurs by Both the Death Receptor and Mitochondrial Pathways. J. Immunol. 2005, 174, 5110–5118.
  57. Cao, C.; Ma, T.; Chai, Y.F.; et al. The Role of Regulatory T Cells in Immune Dysfunction during Sepsis. World J. Emerg. Med. 2015, 6, 5–9.
  58. Taylor, A.L.; Llewelyn, M.J. Superantigen-Induced Proliferation of Human CD4⁺ CD25⁻ T Cells Is Followed by a Switch to a Functional Regulatory Phenotype. J. Immunol. 2010, 185, 6591–6598.
  59. Venet, F.; Pachot, A.; Debard, A.L.; et al. Increased Percentage of CD4⁺ CD25⁺ Regulatory T Cells during Septic Shock Is Due to the Decrease of CD4⁺ CD25⁻ Lymphocytes. Crit. Care Med. 2004, 32, 2329–2331.
  60. Venet, F.; Pachot, A.; Debard, A.L.; et al. Human CD4⁺ CD25⁺ Regulatory T Lymphocytes Inhibit Lipopolysaccharide-Induced Monocyte Survival through a Fas/Fas Ligand-Dependent Mechanism. J. Immunol. 2006, 177, 6540–6547.
  61. Bekeredjian‐Ding, I.; Jego, G. Toll‐Like Receptors–Sentries in the B-Cell Response. Immunology 2009, 128, 311–323.
  62. Ruprecht, C.R.; Lanzavecchia, A. Toll‐Like Receptor Stimulation as a Third Signal Required for Activation of Human Naive B Cells. Eur. J. Immunol. 2006, 36, 810–816.
  63. Buchta, C.M.; Bishop, G.A. TRAF5 Negatively Regulates TLR Signaling in B Lymphocytes. J. Immunol. 2014, 192, 145–150.
  64. Ray, A.; Dittel, B.N. Mechanisms of Regulatory B Cell Function in Autoimmune and Inflammatory Diseases beyond IL-10. J. Clin. Med. 2017, 6, 12.
  65. Zakeri, A.; Russo, M. Dual Role of Toll-Like Receptors in Human and Experimental Asthma Models. Front. Immunol. 2018, 9, 1027.
  66. Supajatura, V.; Ushio, H.; Nakao, A.; et al. Differential Responses of Mast Cell Toll-Like Receptors 2 and 4 in Allergy and Innate Immunity. J. Clin. Invest. 2002, 109, 1351–1359.
  67. Varadaradjalou, S.; Feger, F.; Thieblemont, N.; et al. Toll‐Like Receptor 2 (TLR2) and TLR4 Differentially Activate Human Mast Cells. Eur. J. Immunol. 2003, 33, 899–906.
  68. Keck, S.; Müller, I.; Fejer, G.; et al. Absence of TRIF Signaling in Lipopolysaccharide-Stimulated Murine Mast Cells. J. Immunol. 2011, 186, 5478–5488.
  69. Kagan, J.C.; Su, T.; Horng, T.; et al. TRAM Couples Endocytosis of Toll-Like Receptor 4 to the Induction of Interferon-β. Nat. Immunol. 2008, 9, 361–368.
  70. Kagan, J.C. Signaling Organelles of the Innate Immune System. Cell 2012, 151, 1168–1178.
  71. Dietrich, N.; Rohde, M.; Geffers, R.; et al. Mast Cells Elicit Proinflammatory but Not Type I Interferon Responses upon Activation of TLRs by Bacteria. Proc. Natl. Acad. Sci. 2010, 107, 8748–8753.
  72. McClure, R.; Massari, P. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Front. Immunol. 2014, 5, 386.
  73. Yu, F.S.; Hazlett, L.D. Toll-Like Receptors and the Eye. Invest. Ophthalmol. Vis. Sci. 2006, 47, 1255–1263.
  74. Wilhelmsen, K.; Mesa, K.R.; Lucero, J.; et al. ERK5 Protein Promotes, Whereas MEK1 Protein Differentially Regulates, the Toll-Like Receptor 2 Protein-Dependent Activation of Human Endothelial Cells and Monocytes. J. Biol. Chem. 2012, 287, 26478–26494.
  75. Wong, E.; Xu, F.; Joffre, J.; et al. ERK1/2 Has Divergent Roles in LPS-Induced Microvascular Endothelial Cell Cytokine Production and Permeability. Shock 2021, 55, 349–356.
  76. Li, L.; Acioglu, C.; Heary, R.F.; et al. Role of Astroglial Toll-Like Receptors (TLRs) in Central Nervous System Infections, Injury and Neurodegenerative Diseases. Brain Behav. Immun. 2021, 91, 740–755.
  77. Bsibsi, M.; Ravid, R.; Gveric, D.; et al. Broad Expression of Toll-Like Receptors in the Human Central Nervous System. J. Neuropathol. Exp. Neurol. 2002, 61, 1013–1021.
  78. Olson, J.K.; Miller, S.D. Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs. J. Immunol. 2004, 173, 3916–3924.
  79. Farina, C.; Aloisi, F.; Meinl, E. Astrocytes Are Active Players in Cerebral Innate Immunity. Trends Immunol. 2007, 28, 138–145.
  80. Farina, C.; Krumbholz, M.; Giese, T.; et al. Preferential Expression and Function of Toll-Like Receptor 3 in Human Astrocytes. J. Neuroimmunol. 2005, 159, 12–19.
  81. Xie, L.; Chen, J.; Hu, H.; et al. Engineered M2 Macrophage-Derived Extracellular Vesicles with Platelet Membrane Fusion for Targeted Therapy of Atherosclerosis. Bioact. Mater. 2024, 35, 447–460.
  82. Li, J.L.; Zarbock, A.; Hidalgo, A. Platelets as Autonomous Drones for Hemostatic and Immune Surveillance. J. Exp. Med. 2017, 214, 2193–2204.
  83. Blair, P.; Rex, S.; Vitseva, O.; et al. Stimulation of Toll-Like Receptor 2 in Human Platelets Induces a Thromboinflammatory Response through Activation of Phosphoinositide 3-Kinase. Circ. Res. 2009, 104, 346–354.
  84. Cognasse, F.; Nguyen, K.A.; Damien, P.; et al. The Inflammatory Role of Platelets via Their TLRs and Siglec Receptors. Front. Immunol. 2015, 6, 83.
  85. Ebersole, J.L.; Kirakodu, S.; Novak, M.J.; et al. Comparative Analysis of Expression of Microbial Sensing Molecules in Mucosal Tissues with Periodontal Disease. Immunobiology 2019, 224, 196–206.
  86. Seubbuk, S.; Surarit, R.; Stephens, D.; et al. TLR2 and TLR4 Differentially Regulate the Osteogenic Capacity of Human Periodontal Ligament Fibroblasts. J. Int. Acad. Periodontol. 2021, 23, 3–10.
  87. Takahashi, N.; Sulijaya, B.; Yamada-Hara, M.; et al. Gingival Epithelial Barrier: Regulation by Beneficial and Harmful Microbes. Tissue Barriers 2019, 7, e1651158.
  88. Karlis, G.D.; Schöningh, E.; Jansen, I.D.C.; et al. Chronic Exposure of Gingival Fibroblasts to TLR2 or TLR4 Agonist Inhibits Osteoclastogenesis but Does Not Affect Osteogenesis. Front. Immunol. 2020, 11, 1693.
  89. Wielento, A.; Łagosz-Ćwik, K.; Potempa, J.; et al. The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. J. Dent. Res. 2023, 102, 489–496.
  90. El-Sayed, K.M.F.; Klingebiel, P.; Dörfer, C.E. Toll-Like Receptor Expression Profile of Human Dental Pulp Stem/Progenitor Cells. J. Endod. 2016, 42, 413–417.
  91. Fawzy-El-Sayed, K.; Mekhemar, M.; Adam-Klages, S.; et al. TLR Expression Profile of Human Gingival Margin-Derived Stem Progenitor Cells. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e30.
  92. El-Sayed, K.M.F.; Boeckler, J.; Dörfer, C.E. TLR Expression Profile of Human Alveolar Bone Proper-Derived Stem/Progenitor Cells and Osteoblasts. J. Craniomaxillofac. Surg. 2017, 45, 2054–2060.
  93. Fehrmann, C.; Dörfer, C.E.; El-Sayed, K.M.F. Toll-Like Receptor Expression Profile of Human Stem/Progenitor Cells from the Apical Papilla. J. Endod. 2020, 46, 1623–1630.
  94. Zymovets, V.; Rakhimova, O.; Wadelius, P.; et al. Exploring the Impact of Oral Bacteria Remnants on Stem Cells from the Apical Papilla: Mineralization Potential and Inflammatory Response. Front. Cell. Infect. Microbiol. 2023, 13, 1257433.
  95. Siqueira, J.; Rôças, I.N.; Ricucci, D.; et al. Causes and Management of Post-Treatment Apical Periodontitis. Br. Dent. J. 2014, 216, 305–312.
  96. Sun, Y.; Guo, Q.M.; Liu, D.L.; et al. In Vivo Expression of Toll-Like Receptor 2, Toll-Like Receptor 4, CSF2 and LY64 in Chinese Chronic Periodontitis Patients. Oral Dis. 2010, 16, 343–350.
  97. Hajishengallis, G.; Sojar, H.; Genco, R.J.; et al. Intracellular Signaling and Cytokine Induction upon Interactions of Porphyromonas gingivalis Fimbriae with Pattern-Recognition Receptors. Immunol. Investig. 2004, 33, 157–172.
  98. Wara-Aswapati, N.; Chayasadom, A.; Surarit, R.; et al. Induction of Toll-Like Receptor Expression by Porphyromonas gingivalis. J. Periodontol. 2013, 84, 1010–1018.
  99. Albuquerque-Souza, E.; Crump, K.; Rattanaprukskul, K.; et al. TLR9 Mediates Periodontal Aging by Fostering Senescence and Inflammaging. J. Dent. Res. 2022, 101, 1628–1636.
  100. Kim, P.D.; Xia-Juan, X.; Crump, K.E.; et al. Toll-Like Receptor 9-Mediated Inflammation Triggers Alveolar Bone Loss in Experimental Murine Periodontitis. Infect. Immun. 2015, 83, 2992–3002.
  101. Frank, S.; Copanaki, E.; Burbach, G.J.; et al. Differential Regulation of Toll-Like Receptor mRNAs in Amyloid Plaque-Associated Brain Tissue of Aged APP23 Transgenic Mice. Neurosci. Lett. 2009, 453, 41–44.
  102. Lyu, A.K.; Zhu, S.Y.; Chen, J.L.; et al. Inhibition of TLR9 Attenuates Skeletal Muscle Fibrosis in Aged Sarcopenic Mice via the p53/SIRT1 Pathway. Exp. Gerontol. 2019, 122, 25–33.
  103. Sato, Y.; Tansho-Nagakawa, S.; Ubagai, T.; et al. Analysis of Immune Responses in Acinetobacter baumannii-Infected Klotho Knockout Mice: A Mouse Model of Acinetobacter baumannii Infection in Aged Hosts. Front. Immunol. 2020, 11, 601614.
  104. Beklen, A.; Hukkanen, M.; Richardson, R.; et al. Immunohistochemical Localization of Toll-Like Receptors 1–10 in Periodontitis. Oral Microbiol. Immunol. 2008, 23, 425–431.
  105. Janssens, S.; Beyaert, R. Role of Toll-Like Receptors in Pathogen Recognition. Clin. Microbiol. Rev. 2003, 16, 637–646.
  106. Han, H.; Lian, P.; Chen, H.; et al. The Assessment of TLR1 Gene Polymorphism Association with the Risk of Allergic Rhinitis in the Chinese Han Population from Northern China. J. Asthma Allergy 2023, 16, 979–986.
  107. Vijay, K. Toll-Like Receptors in Immunity and Inflammatory Diseases: Past, Present, and Future. Int. Immunopharmacol. 2018, 59, 391–412.
  108. Cario, E. Barrier-Protective Function of Intestinal Epithelial Toll-Like Receptor 2. Mucosal Immunol. 2008, 1, S62–S66.
  109. Sepehri, Z.; Kiani, Z.; Nasiri, A.A.; et al. Toll-Like Receptor 2 and Type 2 Diabetes. Cell Mol. Biol. Lett. 2016, 21, 1–9.
  110. Han, B.; Zhang, C.; Wang, X.; et al. The Functional Mechanisms of Toll-Like Receptor 3 and Its Implications in Digestive System Tumors. Front. Biosci. 2023, 11, 297.
  111. Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; et al. Recognition of Double-Stranded RNA and Activation of NF-κB by Toll-Like Receptor 3. Nature 2001, 413, 732–738.
  112. Vaure, C.; Liu, Y. A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species. Front. Immunol. 2014, 5, 96623.
  113. Miao, E.A.; Andersen-Nissen, E.; Warren, S.E.; et al. TLR5 and Ipaf: Dual Sensors of Bacterial Flagellin in the Innate Immune System. Semin. Immunopathol. 2007, 29, 275–283.
  114. Lim, J.S.; Nguyen, K.C.T.; Han, J.M.; et al. Direct Regulation of TLR5 Expression by Caveolin-1. Mol. Cells 2015, 38, 1111–1117.
  115. Noreen, M.; Arshad, M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP Polymorphisms with Disease Susceptibility. Immunol. Res. 2015, 62, 234–252.
  116. Yeh, D.W.; Huang, L.R.; Chen, Y.W.; et al. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J. Immunol. Res. 2016, 2016, 368101.
  117. Kang, J.Y.; Nan, X.; Jin, M.S.; et al. Recognition of Lipopeptide Patterns by Toll-Like Receptor 2–Toll-Like Receptor 6 Heterodimer. Immunity 2009, 31, 873–884.
  118. Jackson, S.W.; Rovin, B.H. Resolving a Paradox between Mouse and Man: A Genetic Link between TLR7 and the Pathogenesis of Human Lupus Nephritis. Kidney Int. 2023, 103, 824–826.
  119. Brown, G.J.; Cañete, P.F.; Wang, H.; et al. TLR7 Gain-of-Function Genetic Variation Causes Human Lupus. Nature 2022, 605, 349–356.
  120. Heil, F.; Hemmi, H.; Hochrein, H.; et al. Species-Specific Recognition of Single-Stranded RNA via Toll-Like Receptor 7 and 8. Science 2004, 303, 1526–1529.
  121. Huang, X.; Zhang, X.; Lu, M. Recent Trends in the Development of Toll-Like Receptor 7/8-Targeting Therapeutics. Expert Opin. Drug Discov. 2021, 16, 869–880.
  122. Leite, F.R.; Enevold, C.; Bendtzen, K.; et al. Pattern Recognition Receptor Polymorphisms in Early Periodontitis. J. Periodontol. 2019, 90, 647–654.
  123. Lund, J.; Sato, A.; Akira, S.; et al. Toll-Like Receptor 9–Mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. J. Exp. Med. 2003, 198, 513–520.
  124. Hess, N.J.; Jiang, S.; Li, X.; et al. TLR10 Is a B Cell Intrinsic Suppressor of Adaptive Immune Responses. J. Immunol. 2017, 198, 699–707.
  125. Shukla, S.; Richardson, E.T.; Drage, M.G.; et al. Mycobacterium tuberculosis Lipoprotein and Lipoglycan Binding to Toll-Like Receptor 2 Correlates with Agonist Activity and Functional Outcomes. Infect. Immun. 2018, 86, e00312-18.
  126. Sahasrabudhe, N.M.; Beukema, M.; Tian, L.; et al. Dietary Fiber Pectin Directly Blocks Toll-Like Receptor 2–1 and Prevents Doxorubicin-Induced Ileitis. Front. Immunol. 2018, 9, 383.
  127. Raieli, S.; Trichot, C.; Korniotis, S.; et al. TLR1/2 Orchestrate Human Plasmacytoid Predendritic Cell Response to Gram+ Bacteria. PLoS Biol. 2019, 17, e3000209.
  128. Zhu, J.; Li, G.; Gowda, K. Proinflammatory Responses by Glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum Are Mainly Mediated through the Recognition of TLR2/TLR1. Exp. Parasitol. 2011, 128, 205–211.
  129. Plantinga, T.S.; Johnson, M.D.; Scott, W.K.; et al. Toll-Like Receptor 1 Polymorphisms Increase Susceptibility to Candidemia. J. Infect. Dis. 2012, 205, 934–943.
  130. Monlish, D.; Greenberg, Z.J.; Bhatt, S.; et al. TLR2/6 Signaling Promotes the Expansion of Premalignant Hematopoietic Stem and Progenitor Cells in the NUP98-HOXD13 Mouse Model of MDS. Exp. Hematol. 2020, 88, 42–55.
  131. Su, L.; Wang, Y.; Wang, J.; et al. Structural Basis of TLR2/TLR1 Activation by the Synthetic Agonist Diprovocim. J. Med. Chem. 2019, 62, 2938–2949.
  132. Takeuchi, O.; Kawai, T.; Mühlradt, P.F.; et al. Discrimination of Bacterial Lipoproteins by Toll-Like Receptor 6. Int. Immunol. 2001, 13, 933–940.
  133. Yang, M.; Zheng, M.H.; Meng, X.T.; et al. Role of Toll-Like Receptors in the Pathogenesis of COVID-19: Current and Future Perspectives. Scand. J. Immunol. 2023, 98, e13282.
  134. Frank, M.; Hennenberg, E.M.; Eyking, A.; et al. TLR Signaling Modulates Side Effects of Anticancer Therapy in the Small Intestine. J. Immunol. 2015, 194, 1983–1995.
  135. Weinkove, R.; George, P.J.; Fyfe, R.; et al. A Phase 1 Dose Escalation Trial of Third-Generation CD19-Directed CAR T Cells Incorporating CD28 and Toll-Like Receptor 2 (TLR2) Intracellular Domains for Relapsed or Refractory B-Cell Non-Hodgkin Lymphomas (ENABLE). Blood 2023, 142, 890.
  136. Kwok, Y.H.; Hutchinson, M.R.; Gentgall, M.; et al. Increased Responsiveness of Peripheral Blood Mononuclear Cells to in Vitro TLR 2, 4 and 7 Ligand Stimulation in Chronic Pain Patients. PLoS One 2012, 7, e44232.
  137. Soberman, R.J.; Mackay, C.R.; Vaine, C.A.; et al. CD200R1 Supports HSV-1 Viral Replication and Licenses Pro-Inflammatory Signaling Functions of TLR2. PLoS One 2012, 7, e47740.
  138. Tsai, S.Y.; Segovia, J.A.; Chang, T.H.; et al. Regulation of TLR3 Activation by S100A9. J. Immunol. 2015, 195, 4426–4437.
  139. Lim, H.K.; Seppänen, M.; Hautala, T.; et al. TLR3 Deficiency in Herpes Simplex Encephalitis: High Allelic Heterogeneity and Recurrence Risk. Neurology 2014, 83, 1888–1897.
  140. Chen, Y.; Lin, J.; Zhao, Y.; et al. Toll-Like Receptor 3 (TLR3) Regulation Mechanisms and Roles in Antiviral Innate Immune Responses. J. Zhejiang Univ. Sci. B 2021, 22, 609–632.
  141. Park, B.S.; Lee, J.O. Recognition of Lipopolysaccharide Pattern by TLR4 Complexes. Exp. Mol. Med. 2013, 45, e66.
  142. Opal, S.M.; Laterre, P.F.; Francois, B.; et al. Effect of Eritoran, an Antagonist of MD2-TLR4, on Mortality in Patients with Severe Sepsis: The ACCESS Randomized Trial. JAMA 2013, 309, 1154–1162.
  143. den Dekker, W.K.; Cheng, C.; Pasterkamp, G.; et al. Toll Like Receptor 4 in Atherosclerosis and Plaque Destabilization. Atherosclerosis 2010, 209, 314–320.
  144. Oliveira, A.A.d.; Faustino, J.; Lima, M.E.d.; et al. Unveiling the Interplay Between the TLR4/MD2 Complex and HSP70 in the Human Cardiovascular System: A Computational Approach. Int. J. Mol. Sci. 2019, 20, 3121.
  145. O’Neill, S.; Humphries, D.C.; Tse, G.; et al. Heat Shock Protein 90 Inhibition Abrogates TLR4-Mediated NF-κB Activity and Reduces Renal Ischemia-Reperfusion Injury. Sci. Rep. 2015, 5, 12958.
  146. Xu, Z.; Xie, M.M.; Xie, C.L.; et al. Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects. Mar. Drugs 2025, 23, 49.
  147. Zuo, W.; Zhao, J.; Zhang, J.; et al. MD2 Contributes to the Pathogenesis of Perioperative Neurocognitive Disorder via the Regulation of α5GABAA Receptors in Aged Mice. J. Neuroinflammation 2021, 18, 1.
  148. Stewart, C.R.; Stuart, L.M.; Wilkinson, K.; et al. CD36 Ligands Promote Sterile Inflammation Through Assembly of a Toll-Like Receptor 4 and 6 Heterodimer. Nat. Immunol. 2010, 11, 155–161.
  149. Shmuel-Galia, L.; Klug, Y.; Porat, Z.; et al. Intramembrane Attenuation of the TLR4-TLR6 Dimer Impairs Receptor Assembly and Reduces Microglia-Mediated Neurodegeneration. J. Biol. Chem. 2017, 292, 13415–13427.
  150. Zhou, L.; Wang, X.; Xiao, Q.; et al. Flagellin Restricts HIV-1 Infection of Macrophages Through Modulation of Viral Entry Receptors and CC Chemokines. Viruses 2024, 16, 1063.
  151. Zhao, Y.; Li, Z.; Zhu, X.; et al. Improving Immunogenicity and Safety of Flagellin as Vaccine Carrier by High-Density Display on Virus-Like Particle Surface. Biomaterials 2020, 249, 120030.
  152. Treanor, J.J.; Taylor, D.N.; Tussey, L.; et al. Safety and Immunogenicity of a Recombinant Hemagglutinin Influenza-Flagellin Fusion Vaccine (VAX125) in Healthy Young Adults. Vaccine 2010, 28, 8268–8274.
  153. Gewirtz, A.T.; Navas, T.A.; Lyons, S.; et al. Cutting Edge: Bacterial Flagellin Activates Basolaterally Expressed TLR5 to Induce Epithelial Proinflammatory Gene Expression. J. Immunol. 2001, 167, 1882–1885.
  154. Afzal, H.; Murtaza, A.; Cheng, L.T. Structural Engineering of Flagellin as Vaccine Adjuvant: Quest for the Minimal Domain of Flagellin for TLR5 Activation. Mol. Biol. Rep. 2025, 52, 104.
  155. Takeuchi, O.; Sato, S.; Horiuchi, T.; et al. Cutting Edge: Role of Toll-Like Receptor 1 in Mediating Immune Response to Microbial Lipoproteins. J. Immunol. 2002, 169, 10–14.
  156. Love, W.; Dobbs, N.; Tabor, L.; et al. Toll-Like Receptor 2 (TLR2) Plays a Major Role in Innate Resistance in the Lung Against Murine Mycoplasma. PLoS One 2010, 5, e10739.
  157. Diebold, S.S.; Kaisho, T.; Hemmi, H.; et al. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science 2004, 303, 1529–1531.
  158. Adams, S.; Dewan, Z.; Meng, T.; et al. Evaluation of Toll-Like Receptor (TLR)-7 Agonist Imiquimod Applied Topically to Breast Cancer Chest Wall Recurrences or Skin Metastases. J. Clin. Oncol. 2010, 28, TPS138.
  159. Frega, G.; Wu, Q.; Le Naour, J.; et al. Trial Watch: Experimental TLR7/TLR8 Agonists for Oncological Indications. Oncoimmunology 2020, 9, 1796002.
  160. Paul, A.M.; Acharya, D.; Le, L.; et al. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity Exacerbating West Nile Virus Infection in Mice. J. Immunol. 2016, 197, 4425–4435.
  161. Bender, A.T.; Tzvetkov, E.; Pereira, A.; et al. TLR7 and TLR8 Differentially Activate the IRF and NF-κB Pathways in Specific Cell Types to Promote Inflammation. ImmunoHorizons 2020, 4, 93–107.
  162. Finberg, R.W.; Wang, J.P.; Kurt-Jones, E.A. Toll-Like Receptors and Viruses. Rev. Med. Virol. 2007, 17, 35–43.
  163. Kawai, T.; Akira, S. TLR Signaling. Cell Death Differ. 2006, 13, 816–825.
  164. Wang, Y.; Yang, H.; Li, H.; et al. Development of a Novel TLR8 Agonist for Cancer Immunotherapy. Mol. Biomed. 2020, 1, 6.
  165. Urban-Wojciuk, Z.; Khan, M.M.; Oyler, B.L.; et al. The Role of TLRs in Anti-Cancer Immunity and Tumor Rejection. Front. Immunol. 2019, 10, 2388.
  166. McGowan, D.C. Latest Advances in Small Molecule TLR7/8 Agonist Drug Research. Curr. Top. Med. Chem. 2019, 19, 2228–2238.
  167. Jin, Y.; Zhuang, Y.; Dong, X.; et al. Development of CpG Oligodeoxynucleotide TLR9 Agonists in Anti-Cancer Therapy. Expert Rev. Anticancer Ther. 2021, 21, 841–851.
  168. Kumagai, Y.; Takeuchi, O.; Akira, S. TLR9 as a Key Receptor for the Recognition of DNA. Adv. Drug Deliv. Rev. 2008, 60, 795–804.
  169. Babenko, V.N.; Chadaeva, I.V.; Orlov, Y.L. Genomic Landscape of CpG Rich Elements in Human. BMC Evol. Biol. 2017, 17, 19.
  170. Jeon, D.; Hill, E.; McNeel, D.G. Toll-Like Receptor Agonists as Cancer Vaccine Adjuvants. Hum. Vaccin. Immunother. 2024, 20, 2297453.
  171. Wagner, H. The Sweetness of the DNA Backbone Drives Toll-Like Receptor 9. Curr. Opin. Immunol. 2008, 20, 396–400.
  172. Guan, Y.; Ranoa, D.R.; Jiang, S.; et al. Human TLRs 10 and 1 Share Common Mechanisms of Innate Immune Sensing but Not Signaling. J. Immunol. 2010, 184, 5094–5103.
  173. Su, S.B.; Tao, L.; Deng, Z.P.; et al. TLR10: Insights, Controversies and Potential Utility as a Therapeutic Target. Scand. J. Immunol. 2021, 93, e12988.
  174. Oosting, M.; Cheng, S.C.; Bolscher, J.M.; et al. Human TLR10 Is an Anti-Inflammatory Pattern-Recognition Receptor. Proc. Natl. Acad. Sci. 2014, 111, E4478–E4484.
  175. Hasan, U.; Chaffois, C.; Gaillard, C.; et al. Human TLR10 Is a Functional Receptor, Expressed by B Cells and Plasmacytoid Dendritic Cells, Which Activates Gene Transcription Through MyD88. J. Immunol. 2005, 174, 2942–2950.
  176. Fore, F.; Indriputri, C.; Mamutse, J.; et al. TLR10 and Its Unique Anti-Inflammatory Properties and Potential Use as a Target in Therapeutics. Immune Netw. 2020, 20, e21.
  177. Hess, N.J.; Felicelli, C.; Grage, J.; et al. TLR10 Suppresses the Activation and Differentiation of Monocytes with Effects on DC-Mediated Adaptive Immune Responses. J. Leukoc. Biol. 2017, 101, 1245–1252.
  178. Deb, P.; Singh, S.; Kalyoussef, E.; et al. TLR10 (CD290) Is a Regulator of Immune Responses in Human Plasmacytoid Dendritic Cells. J. Immunol. 2024, 213, 577–587.
  179. Sindhu, S.; Akhter, N.; Kochumon, S.; et al. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress. Cell Physiol. Biochem. 2018, 45, 572–590.
  180. Bui, F.Q.; Almeida-da-Silva, C.L.C.; Huynh, B.; et al. Association Between Periodontal Pathogens and Systemic Disease. Biomed. J. 2019, 42, 27–35.
  181. Sahingur, S.E.; Yeudall, W.A. Chemokine Function in Periodontal Disease and Oral Cavity Cancer. Front. Immunol. 2015, 6, 140295.
  182. Williams, J.M.; Greenslade, J.H.; McKenzie, J.V.; et al. Systemic Inflammatory Response Syndrome, Quick Sequential Organ Function Assessment, and Organ Dysfunction: Insights from a Prospective Database of ED Patients with Infection. Chest 2017, 151, 586–596.
  183. Isola, G.; Santonocito, S.; Lupi, S.M.; et al. Periodontal Health and Disease in the Context of Systemic Diseases. Mediators Inflamm. 2023, 2023, 1–15.
  184. De Nardo, D. Toll-Like Receptors: Activation, Signalling and Transcriptional Modulation. Cytokine 2015, 74, 181–189.
  185. Fernandes, D.; Khambata, R.S.; Massimo, G.; et al. Local Delivery of Nitric Oxide Prevents Endothelial Dysfunction in Periodontitis. Pharmacol. Res. 2023, 188, 106616.
  186. Zou, J.; Zeng, Z.; Xie, W.; et al. Immunotherapy with Regulatory T and B Cells in Periodontitis. Int. Immunopharmacol. 2022, 109, 108797.
  187. Li, Y.; Chen, Y.; Cai, G.; et al. Roles of Trained Immunity in the Pathogenesis of Periodontitis. J. Periodontal Res. 2023, 58, 864–873.
  188. Disale, P.R.; Zope, S.; Suragimath, G.; et al. Toll-Like Receptors: Molecular Microbe Sensors in Periodontium. World J. Dent. 2019, 10, 396–401.
  189. Mahanonda, R.; Pichyangkul, S. Toll-Like Receptors and Their Role in Periodontal Health and Disease. Periodontol. 2000 2007, 43, 41–55.
  190. Goulopoulou, S.; McCarthy, C.G.; Webb, R.C. Toll-Like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol. Rev. 2016, 68, 142–167.
  191. Kim, H.J.; Kim, H.; Lee, J.H.; et al. Toll-Like Receptor 4 (TLR4): New Insight Immune and Aging. Immun. Ageing 2023, 20, 67.
  192. O’Neill, L.A.; Bowie, A.G. The Family of Five: TIR-Domain-Containing Adaptors in Toll-Like Receptor Signalling. Nat. Rev. Immunol. 2007, 7, 353–364.
  193. Ullah, M.O.; Sweet, M.J.; Mansell, A.; et al. TRIF-Dependent TLR Signaling, Its Functions in Host Defense and Inflammation, and Its Potential as a Therapeutic Target. J. Leukoc. Biol. 2016, 100, 27–45.
  194. Zorn, B.; Virant-Klun, I.; Meden-Vrtovec, H. Semen Granulocyte Elastase: Its Relevance for the Diagnosis and Prognosis of Silent Genital Tract Inflammation. Hum. Reprod. 2000, 15, 1978–1984.
  195. Wang, C.; Chen, T.; Zhang, J.; et al. The E3 Ubiquitin Ligase Nrdp1 Preferentially Promotes TLR-Mediated Production of Type I Interferon. Nat. Immunol. 2009, 10, 744–752.
  196. De Nardo, D.; Balka, K.R.; Gloria, Y.C.; et al. Interleukin-1 Receptor–Associated Kinase 4 (IRAK4) Plays a Dual Role in Myddosome Formation and Toll-Like Receptor Signaling. J. Biol. Chem. 2018, 293, 15195–15207.
  197. Zhang, G.; Ghosh, S. Negative Regulation of Toll-Like Receptor-Mediated Signaling by Tollip. J. Biol. Chem. 2002, 277, 7059–7065.
  198. Zhang, J.; Zao, X.; Zhang, J.; et al. Is It Possible to Intervene Early Cirrhosis by Targeting Toll-Like Receptors to Rebalance the Intestinal Microbiome? Int. Immunopharmacol. 2023, 115, 109627.
  199. Lin, M.; Ji, X.; Lv, Y.; et al. The Roles of TRAF3 in Immune Responses. Dis. Markers 2023, 2023, 787803.
  200. Xia, P.; Wu, Y.; Lian, S.; et al. Research Progress on Toll-Like Receptor Signal Transduction and Its Roles in Antimicrobial Immune Responses. Appl. Microbiol. Biotechnol. 2021, 105, 5341–5355.
  201. Farooq, M.; Batool, M.; Kim, M.S.; et al. Toll-Like Receptors as a Therapeutic Target in the Era of Immunotherapies. Front. Cell Dev. Biol. 2021, 9, 756315.
  202. Roshan, M.H.; Tambo, A.; Pace, N.P. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int. J. Inflamm. 2016, 2016, 532832.
  203. Rogero, M.M.; Calder, P.C. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients 2018, 10, 432.
  204. Chen, E.; Chen, C.; Niu, Z.; et al. Poly (I:C) Preconditioning Protects the Heart against Myocardial Ischemia/Reperfusion Injury through TLR3/PI3K/Akt-Dependent Pathway. Signal Transduct. Target. Ther. 2020, 5, 216.
  205. Lei, Y.Q.; Wan, Y.T.; Liang, G.T.; et al. Extracellular RNAs/TLR3 Signaling Contributes to Acute Intestinal Injury Induced by Intestinal Ischemia Reperfusion in Mice. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166790.
  206. Sidletskaya, K.; Vitkina, T.; Denisenko, Y. The Role of Toll-Like Receptors 2 and 4 in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 1481–1493.
  207. Esposito, S.; Tenconi, R.; Lelii, M.; et al. Possible Molecular Mechanisms Linking Air Pollution and Asthma in Children. BMC Pulm. Med. 2014, 14, 1–8.
  208. Frosali, S.; Pagliari, D.; Gambassi, G.; et al. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J. Immunol. Res. 2015, 2015, 89821.
  209. Fang, Y.; Yan, C.; Zhao, Q.; et al. The Association between Gut Microbiota, Toll-Like Receptors, and Colorectal Cancer. Clin. Med. Insights Oncol. 2022, 16, 11795549221130549.
  210. Adhikarla, S.V.; Jha, N.K.; Goswami, V.K.; et al. TLR-Mediated Signal Transduction and Neurodegenerative Disorders. Brain Sci. 2021, 11, 1373.
  211. Tansey, M.G.; Wallings, R.L.; Houser, M.C.; et al. Inflammation and Immune Dysfunction in Parkinson Disease. Nat. Rev. Immunol. 2022, 22, 657–673.
  212. Kwon, S.J.; Khan, M.S.; Kim, S.G. Intestinal Inflammation and Regeneration–Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2024, 25, 1311.
  213. Robertson, S.A.; Hutchinson, M.R.; Rice, K.C.; et al. Targeting Toll-Like Receptor-4 to Tackle Preterm Birth and Fetal Inflammatory Injury. Clin. Transl. Immunol. 2020, 9, e1121.
  214. Wang, S.; Zhang, K.; Yao, Y.; et al. Bacterial Infections Affect Male Fertility: A Focus on the Oxidative Stress-Autophagy Axis. Front. Cell Dev. Biol. 2021, 9, 727812.
  215. Dutta, S.; Sengupta, P.; Slama, P.; et al. Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. Int. J. Mol. Sci. 2021, 22, 10043.
  216. Zhu, W.; Meng, L.; Jiang, C.; et al. Arthritis Is Associated with T-Cell-Induced Upregulation of Toll-Like Receptor 3 on Synovial Fibroblasts. Arthritis Res. Ther. 2011, 13, R103.
  217. Alzabin, S.; Kong, P.; Medghalchi, M.; et al. Investigation of the Role of Endosomal Toll-Like Receptors in Murine Collagen-Induced Arthritis Reveals a Potential Role for TLR7 in Disease Maintenance. Arthritis Res. Ther. 2012, 14, R142.
  218. Meng, L.; Zhu, W.; Jiang, C.; et al. Toll-Like Receptor 3 Upregulation in Macrophages Participates in the Initiation and Maintenance of Pristane-Induced Arthritis in Rats. Arthritis Res. Ther. 2010, 12, R103.
  219. Soraci, L.; Gambuzza, M.E.; Biscetti, L.; et al. Toll-Like Receptors and NLRP3 Inflammasome-Dependent Pathways in Parkinson's Disease: Mechanisms and Therapeutic Implications. J. Neurol. 2022, 270, 1346–1360.
  220. Dabi, Y.T.; Ajagbe, A.O.; Degechisa, S.T. Toll-Like Receptors in Pathogenesis of Neurodegenerative Diseases and Their Therapeutic Potential. Immun. Inflamm. Dis. 2023, 11, 1430.
  221. Mekhemar, M.; Terheyden, I.; Dörfer, C.E.; et al. Inflammatory Modulation of Toll-Like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy. Cells 2025, 14, 432.
  222. Nickerson, K.M.; Christensen, S.R.; Shupe, J.; et al. TLR9 Regulates TLR7- and MyD88-Dependent Autoantibody Production and Disease in a Murine Model of Lupus. J. Immunol. 2010, 184, 1840–1848.
  223. Yogarajah, M.; Sivasambu, B.; Jaffe, E. Bullous Systemic Lupus Erythematosus Associated with Esophagitis Dissecans Superficialis. Case Rep. Rheumatol. 2015, 2015, 930683.
  224. Hajishengallis, G.; Lambris, J.D. Microbial Manipulation of Receptor Crosstalk in Innate Immunity. Nat. Rev. Immunol. 2011, 11, 187–200.
  225. Walter, S.; Letiembre, M.; Liu, Y.; et al. Role of the Toll-Like Receptor 4 in Neuroinflammation in Alzheimer's Disease. Cell. Physiol. Biochem. 2007, 20, 947–956.
  226. Scholtzova, H.; Chianchiano, P.; Pan, J.; et al. Amyloid β and Tau Alzheimer's Disease Related Pathology Is Reduced by Toll-Like Receptor 9 Stimulation. Acta Neuropathol. Commun. 2014, 2, 101.
  227. Calvo-Rodríguez, M.; Fuente, C.L.; García-Durillo, M.; et al. Aging and Amyloid β Oligomers Enhance TLR4 Expression, LPS-Induced Ca2+ Responses, and Neuron Cell Death in Cultured Rat Hippocampal Neurons. J. Neuroinflammation 2017, 14, 24.
  228. Wang, M.M.; Miao, D.; Cao, X.P.; et al. Innate Immune Activation in Alzheimer’s Disease. Ann. Transl. Med. 2018, 6, 177.
  229. Kay, E.; Scotland, R.S.; Whiteford, J.R. Toll-Like Receptors: Role in Inflammation and Therapeutic Potential. Biofactors 2014, 40, 284–294.
  230. Heinz, L.X.; Lee, J.; Kapoor, U.; et al. TASL Is the SLC15A4-Associated Adaptor for IRF5 Activation by TLR7–9. Nature 2020, 581, 316–322.
  231. Odhams, C.A.; Roberts, A.L.; Vester, S.K.; et al. Interferon Inducible X-Linked Gene CXorf21 May Contribute to Sexual Dimorphism in Systemic Lupus Erythematosus. Nat. Commun. 2019, 10, 2164.
  232. Caielli, S.; Wan, Z.; Pascual, V. Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond. Nat. Rev. Immunol. 2023, 41, 533–560.
  233. Ban, T.; Sato, G.; Nishiyama, A.; et al. Lyn Kinase Suppresses the Transcriptional Activity of IRF5 in the TLR-MyD88 Pathway to Restrain the Development of Autoimmunity. Immunity 2016, 45, 319–332.
  234. McGarry, T.; Biniecka, M.; Gao, W.; et al. Resolution of TLR2-Induced Inflammation through Manipulation of Metabolic Pathways in Rheumatoid Arthritis. Sci. Rep. 2017, 7, 43165.
  235. Kalliolias, G.D.; Basdra, E.K.; Papavassiliou, A.G. Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update. Biomedicines 2024, 12, 138.
  236. Chávez-Sánchez, L.; Madrid-Miller, A.; Chávez-Rueda, K.; et al. Activation of TLR2 and TLR4 by Minimally Modified Low-Density Lipoprotein in Human Macrophages and Monocytes Triggers the Inflammatory Response. Hum. Immunol. 2010, 71, 737–744.
  237. Schoneveld, A.H.; Hoefer, I.; Sluijter, J.P.; et al. Atherosclerotic Lesion Development and Toll-Like Receptor 2 and 4 Responsiveness. Atherosclerosis 2008, 197, 95–104.
  238. Shafeghat, M.; Kazemian, S.; Aminorroaya, A.; et al. Toll-Like Receptor 7 Regulates Cardiovascular Diseases. Int. Immunopharmacol. 2022, 113, 109390.
  239. Cole, J.E.; Navin, T.J.; Cross, A.J.; et al. Unexpected Protective Role for Toll-Like Receptor 3 in the Arterial Wall. Proc. Natl. Acad. Sci. 2011, 108, 2372–2377.
  240. Koulis, C.; Chen, Y.C.; Hausding, C.; et al. Protective Role for Toll-Like Receptor 9 in the Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 516–525.
  241. Rajendran, M.; Sivasankar, K.; Subbarayan, S. Toll Gates: An Emerging Therapeutic Target. J. Indian Soc. Periodontol. 2014, 18, 686.
  242. Liao, W.L.; Chen, R.H.; Lin, H.J.; et al. Toll-Like Receptor Gene Polymorphisms Are Associated with Susceptibility to Graves' Ophthalmopathy in Taiwan Males. BMC Med. Genet. 2010, 11, 154.
  243. Yılmaz, B.; Emingil, G.; Öztürk, V.Ö.; et al. Gingival Crevicular Fluid Levels of TLR-9, AIM-2, and ZBP-1 in Periodontal Diseases. Oral Dis. 2024, 31, 941–948.
  244. Zeng, W.; Liu, G.; Luan, Q.; et al. Epstein-Barr Virus Promotes Inflammatory Cytokine Production in Human Gingival Fibroblasts. Int. Dent. J. 2024, 74, 607–615.
  245. Rose, W.A., II; Sakamoto, K.; Leifer, C.A. TLR9 Is Important for Protection Against Intestinal Damage and for Intestinal Repair. Sci. Rep. 2012, 2, 574.
  246. Coppo, R.; Camilla, R.; Amore, A.; et al. Toll-Like Receptor 4 Expression Is Increased in Circulating Mononuclear Cells of Patients with Immunoglobulin A Nephropathy. Clin. Exp. Immunol. 2009, 159, 73–81.
  247. Ciferská, H.; Honsová, E.; Lodererová, A.; et al. Does the Renal Expression of Toll-Like Receptors Play a Role in Patients with IgA Nephropathy? J. Nephrol. 2019, 33, 307–316.
  248. Nakata, J.; Suzuki, Y.; Suzuki, H.; et al. Changes in Nephritogenic Serum Galactose-Deficient IgA1 in IgA Nephropathy Following Tonsillectomy and Steroid Therapy. PLoS One 2014, 9, e89707.
  249. Zheng, N.; Xie, K.; Ye, H.; et al. TLR7 in B Cells Promotes Renal Inflammation and Gd-IgA1 Synthesis in IgA Nephropathy. JCI Insight 2020, 5, e139081.
  250. Zou, M.; Guo, K.; Qian, D.; et al. Network Pharmacological Analysis of Hydroxychloroquine Intervention in the Treatment of IgA Nephropathy. Curr. Pharm. Des. 2023, 31, 730–740.
  251. El-Sayed, K.M.F.; Mekhemar, M.; Adam-Klages, S.; et al. TLR Expression Profile of Human Gingival Margin-Derived Stem Progenitor Cells. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e30–e38.
  252. Cario, E. Toll-Like Receptors in Inflammatory Bowel Diseases: A Decade Later. Inflamm. Bowel Dis. 2010, 16, 1583–1597.
  253. Ren, J.; Chen, X.; Chen, Z.J. IKKβ Is an IRF5 Kinase That Instigates Inflammation. Proc. Natl. Acad. Sci. 2014, 111, 17438–17443.
  254. Feng, S.; Zhang, C.; Chen, S.; et al. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J. Inflamm. Res. 2023, 16, 2491–2501.
  255. Guo, J.; Liao, M.; Wang, J. TLR4 Signaling in the Development of Colitis-Associated Cancer and Its Possible Interplay with MicroRNA-155. Cell Commun. Signal. 2021, 19, 90.
  256. Schmitt, H.; Ulmschneider, J.; Billmeier, U.; et al. The TLR9 Agonist Cobitolimod Induces IL10-Producing Wound Healing Macrophages and Regulatory T Cells in Ulcerative Colitis. J. Crohns Colitis 2019, 14, 508–524.
  257. Chung, L.Y.R.; Lin, Y.T.; Liu, C.; et al. Neuroinflammation Upregulated Neuronal Toll-Like Receptors 2 and 4 to Drive Synucleinopathy in Neurodegeneration. Front. Pharmacol. 2022, 13, 845930.
  258. Maatouk, L.; Compagnion, A.C.; Sauvage, M.C.; et al. TLR9 Activation via Microglial Glucocorticoid Receptors Contributes to Degeneration of Midbrain Dopamine Neurons. Nat. Commun. 2018, 9, 2450.
  259. Leventhal, J.S.; Schröppel, B. Toll-Like Receptors in Transplantation: Sensing and Reacting to Injury. Kidney Int. 2012, 81, 826–832.
  260. Brentano, F.; Kyburz, D.; Gay, S. Toll-Like Receptors and Rheumatoid Arthritis. Methods Mol. Biol. 2009, 517, 329–343.
  261. Abdollahi-Roodsaz, S.; Joosten, L.A.; Koenders, M.I.; et al. Stimulation of TLR2 and TLR4 Differentially Skews the Balance of T Cells in a Mouse Model of Arthritis. J. Clin. Invest. 2008, 118, 205–216.
  262. Kužnik, A.; Benčina, M.; Švajger, U.; et al. Mechanism of Endosomal TLR Inhibition by Antimalarial Drugs and Imidazoquinolines. J. Immunol. 2011, 186, 4794–4804.
  263. Chen, F.; Zou, L.; Williams, B.; et al. Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxid. Redox Signal. 2021, 35, 1324–1339.
  264. Tilstra, J.S.; Kim, M.J.; Gordon, R.A.; et al. B Cell-Intrinsic Myd88 Regulates Disease Progression in Murine Lupus. J. Exp. Med. 2023, 220, e20231427.
  265. Zhang, Y.; Liu, J.; Wang, C.; et al. Toll-Like Receptors Gene Polymorphisms in Autoimmune Disease. Front. Immunol. 2021, 12, 738532.
  266. Smith, N.; Rodero, M.P.; Bekaddour, N.; et al. Control of TLR7-Mediated Type I IFN Signaling in pDCs Through CXCR4 Engagement—A New Target for Lupus Treatment. Sci. Adv. 2019, 5, eaav9019.
  267. Zhu, J.; Mohan, C. Toll-Like Receptor Signaling Pathways—Therapeutic Opportunities. Mediators Inflamm. 2010, 2010, 781235.
  268. Gao, W.; Xiong, Y.; Li, Q.; et al. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front. Physiol. 2017, 8, 508.
  269. Santiago-Raber, M.L.; Dunand-Sauthier, I.; Wu, T.; et al. Critical Role of TLR7 in the Acceleration of Systemic Lupus Erythematosus in TLR9-Deficient Mice. J. Autoimmun. 2010, 34, 339–348.
  270. Wang, X.; Smith, C.; Yin, H. Targeting Toll-Like Receptors with Small Molecule Agents. Chem. Soc. Rev. 2013, 42, 4859–4872.
  271. Lee, Y.H.; Song, G.G. Systemic Lupus Erythematosus and Toll-Like Receptor 9 Polymorphisms: A Meta-Analysis of Genetic Association Studies. Lupus 2023, 32, 964–973.
  272. Yun, T.J.; Igarashi, S.; Zhao, H.; et al. Human Plasmacytoid Dendritic Cells Mount a Distinct Antiviral Response to Virus-Infected Cells. Sci. Immunol. 2021, 6, eabc1234.
  273. Krug, A.; French, A.R.; Barchet, W.; et al. TLR9-Dependent Recognition of MCMV by IPC and DC Generates Coordinated Cytokine Responses That Activate Antiviral NK Cell Function. Immunity 2004, 21, 107–119.
  274. Ma, Y.; He, B. Recognition of Herpes Simplex Viruses: Toll-Like Receptors and Beyond. J. Mol. Biol. 2014, 426, 1133–1147.
  275. Rallabhandi, P.; Phillips, R.L.; Boukhvalova, M.S.; et al. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2. mBio 2012, 3, e00218-12.
  276. Saidoune, F.; Lee, D.; Di Domizio, J.; et al. Enhanced TLR7-Dependent Production of Type I Interferon by pDCs Underlies Pandemic Chilblains. J. Exp. Med. 2025, 222, e20231467.
  277. Kader, M.; Smith, A.P.; Guiducci, C.; et al. Blocking TLR7- and TLR9-Mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection. PLoS Pathog. 2013, 9, e1003530.
  278. Abston, E.D.; Coronado, M.J.; Bucek, A.; et al. TLR3 Deficiency Induces Chronic Inflammatory Cardiomyopathy in Resistant Mice Following Coxsackievirus B3 Infection: Role for IL-4. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R267–R277.
  279. Zhao, Z.; Cai, T.Z.; Lu, Y.; et al. Coxsackievirus B3 Induces Viral Myocarditis by Upregulating Toll-Like Receptor 4 Expression. Biochemistry 2015, 80, 455–462.
  280. Zheng, S.Y.; Dong, J.Z. Role of Toll-Like Receptors and Th Responses in Viral Myocarditis. Front. Immunol. 2022, 13, 843891.
  281. Yajima, T.; Knowlton, K.U. Viral Myocarditis: From the Perspective of the Virus. Circulation 2009, 119, 2615–2624.
  282. Li, S.; Yan, Y.; Xu, W.; et al. MicroRNA-146a Represses Mycobacteria-Induced Inflammatory Response and Facilitates Bacterial Replication via Targeting IRAK-1 and TRAF-6. PLoS One 2013, 8, e81438.
  283. Meng, L.; Zhang, P.; Li, C.; et al. miRNA-133 Augments Coelomocyte Phagocytosis in Bacteria-Challenged Apostichopus japonicus via Targeting the TLR Component of IRAK-1 In Vitro and In Vivo. Sci. Rep. 2015, 5, 12608.
  284. Luo, X.; Yang, W.; Ye, D.Q.; et al. A Functional Variant in microRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus. PLoS Genet. 2011, 7, e1002128.
  285. Stanczyk, J.; Pedrioli, D.M.; Brentano, F.; et al. Altered Expression of microRNA in Synovial Fibroblasts and Synovial Tissue in Rheumatoid Arthritis. Arthritis Rheum. 2008, 58, 1001–1009.
  286. Taganov, K.D.; Boldin, M.P.; Chang, K.J.; et al. NF-κB-Dependent Induction of microRNA miR-146, an Inhibitor Targeted to Signaling Proteins of Innate Immune Responses. Proc. Natl. Acad. Sci. 2006, 103, 12481–12486.
  287. Juknat, A.; Gao, F.; Coppola, G.; et al. miRNA Expression Profiles and Molecular Networks in Resting and LPS-Activated BV-2 Microglia—Effect of Cannabinoids. PLoS One 2019, 14, e0212039.
  288. Selvaskandan, H.; Pawluczyk, I.; Barratt, J. MicroRNAs: A New Avenue to Understand, Investigate and Treat Immunoglobulin A Nephropathy? Clin. Kidney J. 2017, 11, 29–37.
  289. Chassin, C.; Kocur, M.; Pott, J.; et al. miR-146a Mediates Protective Innate Immune Tolerance in the Neonate Intestine. Cell Host Microbe 2010, 8, 358–368.
  290. Bayraktar, R.; Bertilaccio, M.T.S.; Calin, G.A. The Interaction Between Two Worlds: MicroRNAs and Toll-Like Receptors. Front. Immunol. 2019, 10, 1053.
  291. Wallach, T.; Wetzel, M.; Dembny, P.; et al. Identification of CNS Injury-Related microRNAs as Novel Toll-Like Receptor 7/8 Signaling Activators by Small RNA Sequencing. Cells 2020, 9, 186.
  292. Przybyciński, J.; Czerewaty, M.; Kwiatkowska, E.; et al. MicroRNAs miR-148a-3p, miR-425-3p, and miR-20a-5p in Patients with IgA Nephropathy. Genes 2025, 16, 125.
  293. Yao, X.; Zhai, Y.; An, H.; et al. MicroRNAs in IgA Nephropathy. Ren. Fail. 2021, 43, 1298–1310.
  294. Pawluczyk, I.; Nicholson, M.; Barbour, S.; et al. A Pilot Study to Predict Risk of IgA Nephropathy Progression Based on miR-204 Expression. Kidney Int. Rep. 2021, 6, 2179–2188.
  295. El-Ekiaby, N.; Hamdi, N.; Negm, M.; et al. Repressed Induction of Interferon-Related microRNAs miR-146a and miR-155 in Peripheral Blood Mononuclear Cells Infected with HCV Genotype 4. FEBS Open Bio 2012, 2, 179–186.
  296. Zhong, Y.; Zhang, C.; Zheng, X.; et al. Mechanism Research on MicroRNA-669f-5p/Deoxycytidylate Deaminase Axis Mediating Sevoflurane-Induced Cognitive Dysfunction in Aged Mice. Fundam. Clin. Pharmacol. 2024, 38, 1031–1044.
  297. Yan, Y.; Lu, K.; Ye, T.; et al. MicroRNA-223 Attenuates LPS-Induced Inflammation in an Acute Lung Injury Model via the NLRP3 Inflammasome and TLR4/NF-κB Signaling Pathway via RHOB. Int. J. Mol. Med. 2019, 43, 1467–1477.
  298. Ye, J.; Tang, X.; Li, M.; et al. MicroRNA-223 Alleviates Inflammatory Response in Renal Ischemia-Reperfusion Injury by Targeting NLRP3. Kaohsiung J. Med. Sci. 2024, 40, 789–800.
  299. Neudecker, V.; Haneklaus, M.; Jensen, O.; et al. Myeloid-Derived miR-223 Regulates Intestinal Inflammation via Repression of the NLRP3 Inflammasome. J. Exp. Med. 2017, 214, 1737–1752.
  300. Ye, D.; Zhang, T.; Lou, G.; et al. Role of miR-223 in the Pathophysiology of Liver Diseases. Exp. Mol. Med. 2018, 50, 1–12.
  301. Wang, D.; Sun, S.; Xue, Y.; et al. MicroRNA-223 Negatively Regulates LPS-Induced Inflammatory Responses by Targeting NLRP3 in Human Dental Pulp Fibroblasts. Int. Endod. J. 2020, 54, 241–254.
  302. Tian, J.; Zhou, D.; Xiang, L.; et al. miR-223-3p Inhibits Inflammation and Pyroptosis in Monosodium Urate-Induced Rats and Fibroblast-Like Synoviocytes by Targeting NLRP3. Clin. Exp. Immunol. 2021, 204, 396–410.
  303. Haque, M.M.; Yerex, K.; Kelekis-Cholakis, A.; et al. Advances in Novel Therapeutic Approaches for Periodontal Diseases. BMC Oral Health 2022, 22, 492.
  304. Hua, F.; Tang, H.; Wang, J.; et al. TAK-242, an Antagonist for Toll-Like Receptor 4, Protects Against Acute Cerebral Ischemia/Reperfusion Injury in Mice. J. Cereb. Blood Flow Metab. 2015, 35, 536–542.
  305. Liu, Z.; He, Y.; Xu, C.; et al. The Role of PHF8 and TLR4 in Osteogenic Differentiation of Periodontal Ligament Cells in Inflammatory Environment. J. Periodontol. 2021, 92, 1049–1059.
  306. Clark, R.B.; Cervantes, J.L.; Maciejewski, M.W.; et al. Serine Lipids of Porphyromonas gingivalis Are Human and Mouse Toll-Like Receptor 2 Ligands. Infect. Immun. 2013, 81, 3479–3489.
  307. Piao, W.; Song, C.; Chen, H.; et al. Endotoxin Tolerance Dysregulates MyD88- and Toll/IL-1R Domain-Containing Adapter Inducing IFN-β-Dependent Pathways and Increases Expression of Negative Regulators of TLR Signaling. J. Leukoc. Biol. 2009, 86, 863–875.
  308. Matsuguchi, T.; Masuda, A.; Sugimoto, K.; et al. JNK-Interacting Protein 3 Associates with Toll-Like Receptor 4 and Is Involved in LPS-Mediated JNK Activation. EMBO J. 2003, 22, 4455–4464.
  309. Hajishengallis, G.; Wang, M.; Bagby, G.J.; et al. Importance of TLR2 in Early Innate Immune Response to Acute Pulmonary Infection with Porphyromonas gingivalis in Mice. J. Immunol. 2008, 181, 4141–4149.
  310. Makkawi, H.; Hoch, S.; Burns, E.; et al. Porphyromonas gingivalis Stimulates TLR2-PI3K Signaling to Escape Immune Clearance and Induce Bone Resorption Independently of MyD88. Front. Cell. Infect. Microbiol. 2017, 7, 359.
  311. Finamore, A.; Roselli, M.; Imbinto, A.; et al. Lactobacillus amylovorus Inhibits the TLR4 Inflammatory Signaling Triggered by Enterotoxigenic Escherichia coli via Modulation of the Negative Regulators and Involvement of TLR2 in Intestinal Caco-2 Cells and Pig Explants. PLoS One 2014, 9, e94891.
  312. Kanmani, P.; Ansari, A.; Villena, J.; et al. Immunobiotics Beneficially Modulate TLR4 Signaling Triggered by Lipopolysaccharide and Reduce Hepatic Steatosis in Vitro. J. Immunol. Res. 2019, 2019, 3876896.
  313. Lysakova-Devine, T.; Keogh, B.; Harrington, B.; et al. Viral Inhibitory Peptide of TLR4, a Peptide Derived from Vaccinia Protein A46, Specifically Inhibits TLR4 by Directly Targeting MyD88 Adaptor-like and TRIF-related Adaptor Molecule. J. Immunol. 2010, 185, 4261–4271.
  314. Rangasamy, S.B.; Jana, M.; Roy, A.; et al. Selective Disruption of TLR2-MyD88 Interaction Inhibits Inflammation and Attenuates Alzheimer’s Pathology. J. Clin. Invest. 2018, 128, 4297–4312.
  315. Kwon, H.K.; Patra, M.C.; Shin, H.J.; et al. A Cell-Penetrating Peptide Blocks Toll-like Receptor-Mediated Downstream Signaling and Ameliorates Autoimmune and Inflammatory Diseases in Mice. Exp. Mol. Med. 2019, 51, 1–19.
  316. Zhou, X.; Li, X.; Wang, X.; et al. Cecropin B Represses CYP3A29 Expression through Activation of the TLR2/4-NF-κB/PXR Signaling Pathway. Sci. Rep. 2016, 6, 27876.
  317. Toshchakov, V.Y.; Javmen, A. Targeting the TLR Signalosome with TIR Domain-Derived Cell-Permeable Decoy Peptides: The Current State and Perspectives. Innate Immun. 2020, 26, 35–47.
  318. Takeshita, F.; Leifer, C.A.; Gursel, I.; et al. Cutting Edge: Role of Toll-like Receptor 9 in CpG DNA-Induced Activation of Human Cells. J. Immunol. 2001, 167, 3555–3558.
  319. Bai, G.; Yu, H.; Guan, X.; et al. CpG Immunostimulatory Oligodeoxynucleotide 1826 as a Novel Nasal ODN Adjuvant Enhanced the Protective Efficacy of the Periodontitis Gene Vaccine in a Periodontitis Model in SD Rats. BMC Oral Health 2021, 21, 403.
  320. Wang, N.; Xia, D. Activation of Local Innate Immune Signal Induces Periodontitis in Microbiota-Dependent Manner. FEMS Microbiol. Lett. 2019, 366, fnz147.
  321. Hsieh, Y.C.; Lee, K.C.; Wu, P.S.; et al. Eritoran Attenuates Hepatic Inflammation and Fibrosis in Mice with Chronic Liver Injury. Cells 2021, 10, 1562.
  322. Mattke, J.; Darden, C.M.; Vasu, S.; et al. Inhibition of Toll-like Receptor 4 Using Small Molecule, TAK-242, Protects Islets from Innate Immune Responses. Cells 2024, 13, 416.
  323. Panaro, M.A.; Corrado, A.; Benameur, T.; et al. The Emerging Role of Curcumin in the Modulation of TLR-4 Signaling Pathway: Focus on Neuroprotective and Anti-Rheumatic Properties. Int. J. Mol. Sci. 2020, 21, 2299.
  324. Yuan, T.; Tang, H.; Xu, X.; et al. Inflammation Conditional Genome Editing Mediated by the CRISPR-Cas9 System. iScience 2023, 26, 106872.
  325. Collotta, D.; Bertocchi, I.; Chiapello, E.; et al. Antisense Oligonucleotides: A Novel Frontier in Pharmacological Strategy. Front. Pharmacol. 2023, 14, 1304342.
  326. Tong, L.; Zhang, X.; Hao, H.; et al. Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammation in DSS-Induced Colitis Mice. Nutrients 2021, 13, 3319.
  327. Ohland, C.L.; MacNaughton, W.K. Probiotic Bacteria and Intestinal Epithelial Barrier Function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819.
  328. Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. TLR Agonists as Vaccine Adjuvants in the Prevention of Viral Infections: An Overview. Front. Microbiol. 2023, 14, 1249718.
  329. Zhang, J.; Chen, B.; Gan, C.; et al. A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, Therapeutic Targets, and Delivery Strategies for Cancer Therapy. Int. J. Nanomedicine 2023, 18, 7605–7635.
  330. Lim, Y.; Kang, T.K.; Kim, M.I.; et al. Massively Parallel Screening of Toll/Interleukin-1 Receptor (TIR)-Derived Peptides Reveals Multiple Toll-like Receptors (TLRs)-Targeting Immunomodulatory Peptides. Adv. Sci. 2025, 12, e2406018.
  331. Gümüş, P. The Role of TLRs in the Pathogenesis of Periodontal Diseases. J. Dent. Sci. Ther. 2016, 1, 3–6.
  332. Fatemi, K.; Radvar, M.; Rezaee, S.A.; et al. Comparison of Relative TLR-2 and TLR-4 Expression Level of Diseased and Healthy Gingival Tissue of Smoking and Non-Smoking Patients and Periodontally Healthy Control Patients. Aust. Dent. J. 2013, 58, 315–320.
  333. Singh, S.; Mishra, A. Revisiting the Significance of TLRs: Current Understanding and Future Scope for Therapeutic Implications. Curr. Signal Transduct. Ther. 2025, 20, E15743624341069.
  334. Slivka, P.F.; Shridhar, M.; Lee, G.I.; et al. A Peptide Antagonist of the TLR4–MD2 Interaction. Chembiochem 2009, 10, 645–649.
  335. Piao, W.; Vogel, S.N.; Toshchakov, V.Y. Inhibition of TLR4 Signaling by TRAM-Derived Decoy Peptides In Vitro and In Vivo. J. Immunol. 2013, 190, 2263–2272.
  336. Feng, W.; Yu, H.; Xue, T.; et al. The Biocomplex Assembled from Antigen Peptide and Toll-like Receptor Agonist Improved the Immunity against Pancreatic Adenocarcinoma In Vivo. J. Oncol. 2022, 2022, 2965496.