Histоpathоlоgical Evaluatiоn оf the Neurоprоtective Effects оf Mоringa Leaf Extracts in Methоtrexate-Induced Hippоcampal Damage in Albinо Rats

Trends in Immunotherapy

Article

Histоpathоlоgical Evaluatiоn оf the Neurоprоtective Effects оf Mоringa Leaf Extracts in Methоtrexate-Induced Hippоcampal Damage in Albinо Rats

Mehdar, K. M. (2025). Histоpathоlоgical Evaluatiоn оf the Neurоprоtective Effects оf Mоringa Leaf Extracts in Methоtrexate-Induced Hippоcampal Damage in Albinо Rats. Trends in Immunotherapy, 9(3), 197–209. https://doi.org/10.54963/ti.v9i3.1400

Authors

  • Khlood M Mehdar

    Department of Anatomy, Faculty of Medicine, Najran University, Najran 61441, Kingdom of Saudi Arabia

Received: 14 July 2025; Revised: 21 July 2025; Accepted: 30 July 2025; Published: 4 September 2025

Methotrexate is a widely utilized chemotherapeutic agent known to induce neurotoxic effects, thereby constraining its therapeutic potential across various malignancies. While Moringa leaf extract has demonstrated significant antioxidants and anti-inflammatory properties, its role in mitigating Methotrexate-induced neurotoxicity remains inadequately explored. This study seeks to elucidate the protective effects of Moringa leaf extract on Methotrexate-mediated damage within the dentate gyrus of the hippocampus. Male rats were administered Moringa leaf extract at 300 mg/kg body weight via oral gavage bi-weekly over four weeks. Concurrently, select groups received intraperitoneal injections of 0.5 mg/kg Methotrexate twice weekly for the study. The administration of Methotrexate elicited oxidative stress, as evidenced by elevated levels of malondialdehyde and diminished activity of superoxide dismutase. Histopathological assessments revealed that Methotrexate treatment induced significant alterations in the dentate gyrus, characterized by an inflammatory response marked by the upregulation of Toll-like receptor 4. Activation of the Toll-like receptor 4 signalling pathway consequently led to an increased expression of the Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3-inflammasome and enhanced caspase-1 activation. Importantly, co-administration of Moringa leaf extract with Methotrexate substantially reduced both inflammatory and oxidative stress markers while restoring the dentate gyrus's structural integrity. Moringa leaf extract demonstrates potent antioxidant and anti-inflammatory properties that effectively counteract Methotrexate-induced neurotoxicity by modulating the brain's TLR4/NLRP3/caspase-1 signalling axis.

Keywords:

Moringa Leaf Extract Dentate Gyrus Methotrexate Antioxidant Anti‑Inflammatory

References

  1. Ahmed, Z.S.O.; Hussein, S.; Ghandour, R.A.; et al. Evaluation of the Effect of Methotrexate on the Hippocampus, Cerebellum, Liver, and Kidneys of Adult Male Albino Rat: Histopathological, Immunohistochemical and Biochemical Studies. Acta Histochem. 2021, 123, 151682.
  2. Koźmiński, P.; Halik, P.K.; Chesori, R.; et al. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int. J. Mol. Sci. 2020, 21, 3483.
  3. Liu, H.; Wan, H.; Zhang, A.; et al. Polypyrrole-Ferric Phosphate-Methotrexate Nanoparticles Enhance Apoptosis/Ferroptosis of M1 Macrophages via Autophagy Blockage for Rheumatoid Arthritis Treatment. J. Nanobiotechnol. 2025, 23, 428.
  4. Salwa, M.O.; Dorria, A.M.; Ahlam, W.M.; et al. The Toxic Effects of Methotrexate on the Cerebellar Cortex of Adult Albino Rats and the Protective Role of Vitamin C: A Light Microscopic Study. Med. J. Cairo Univ. 2021, 89, 2131–2136.
  5. Karpa, V.; Kalinderi, K.; Fidani, L.; et al. Association of MicroRNA Polymorphisms With Toxicities Induced by Methotrexate in Children With Acute Lymphoblastic Leukemia. Hematol. Rep. 2023, 15, 634–650.
  6. Yuksel, Y.; Yuksel, R.; Yagmurca, M.; et al. Effects of Quercetin on Methotrexate-Induced Nephrotoxicity in Rats. Hum. Exp. Toxicol. 2017, 36, 51–61.
  7. Hwang, S.Y.; Kim, K.; Ha, B.; et al. Neurocognitive Effects of Chemotherapy for Colorectal Cancer: A Systematic Review and a Meta-Analysis of 11 Studies. Cancer Res. Treat. 2021, 53, 1134–1147.
  8. Li, W.; Mo, J.; Yang, Z.; et al. Risk Factors Associated With High-Dose Methotrexate Induced Toxicities. Expert Opin. Drug Metab. Toxicol. 2024, 20, 263–274.
  9. Ayuob, N.N.; El Wahab, M.G.A.; Ali, S.S.; et al. Ocimum basilicum Improve Chronic Stress-Induced Neurodegenerative Changes in Mice Hippocampus. Metab. Brain Dis. 2018, 33, 795–804.
  10. Kolli, V.K.; Natarajan, K.; Isaac, B.; et al. Mitochondrial Dysfunction and Respiratory Chain Defects in a Rodent Model of Methotrexate-Induced Enteritis. Hum. Exp. Toxicol. 2014, 33, 1051–1065.
  11. Nogueira, E.; Sárria, M.P.; Azoia, N.G.; et al. Internalization of Methotrexate Conjugates by Folate Receptor-α. Biochemistry 2018, 57, 6780–6786.
  12. Qamar, H.; Rehman, S.; Chauhan, D.K. Current Status and Future Perspective for Research on Medicinal Plants With Anticancerous Activity and Minimum Cytotoxic Value. Curr. Drug Targets 2019, 20, 1227–1243.
  13. Cuellar-Nuñez, M.L.; Luzardo-Ocampo, I.; Campos-Vega, R.; et al. Physicochemical and Nutraceutical Properties of Moringa (Moringa oleifera) Leaves and Their Effects in an In Vivo AOM/DSS-Induced Colorectal Carcinogenesis Model. Food Res. Int. 2018, 105, 159–168.
  14. Mohamed, A.A.R.; Metwally, M.M.M.; Khalil, S.R.; et al. Moringa oleifera Extract Attenuates the CoCl₂ Induced Hypoxia of Rat’s Brain: Expression Pattern of HIF-1α, NF-kB, MAO and EPO. Biomed. Pharmacother. 2019, 109, 1688–1697.
  15. Batmomolin, A.; Ahsan, A.; Wiyasa, I.W.A.; et al. Ethanolic Extract of Moringa oleifera Leaves Improve Inflammation, Angiogenesis, and Blood Pressure in Rat Model of Preeclampsia. J. Appl. Pharm. Sci. 2020, 10, 52–57.
  16. Farid, A.S.; Hegazy, A.M. Ameliorative Effects of Moringa oleifera Leaf Extract on Levofloxacin-Induced Hepatic Toxicity in Rats. Drug Chem. Toxicol. 2020, 43, 616–622.
  17. Hagihara, H.; Toyama, K.; Yamasaki, N.; et al. Dissection of Hippocampal Dentate Gyrus From Adult Mouse. J. Vis. Exp. 2009, 33, 1543.
  18. Soliman, M.M.; Aldhahrani, A.; Alkhedaide, A.; et al. The Ameliorative Impacts of Moringa Oleifera Leaf Extract Against Oxidative Stress and Methotrexate-Induced Hepato-Renal Dysfunction. Biomed. Pharmacother. 2020, 128, 110259.
  19. Klopfleisch, R. Multiparametric and Semiquantitative Scoring Systems for the Evaluation of Mouse Model Histopathology—A Systematic Review. BMC Vet. Res. 2013, 9, 1–15.
  20. Yip, P.K.; Hasan, S.; Liu, Z.H.; et al. Characterisation of Severe Traumatic Brain Injury Severity From Fresh Cerebral Biopsy of Living Patients: An Immunohistochemical Study. Biomedicines 2022, 10, 518.
  21. Maae, E.; Nielsen, M.; Steffensen, K.D.; et al. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast. J. Histochem. Cytochem. 2011, 59, 750–760.
  22. Ilić, I.R.; Stojanović, N.M.; Radulović, N.S.; et al. The Quantitative ER Immunohistochemical Analysis in Breast Cancer: Detecting the 3+0, 4+0, and 5+0 Allred Score Cases. Medicina 2019, 55, 461.
  23. Schneider, T.; Przewłocki, R. Behavioral Alterations in Rats Prenatally Exposed to Valproic Acid: Animal Model of Autism. Neuropsychopharmacology 2005, 30, 80–89.
  24. Hasan, R.R.A.; Al-Gareeb, A.I. The Protective Effect of Alfa Lipoic Acid Against Methotrexate-Induced Acute Liver Injury in Mice. Biochem. Cell Arch. 2022, 22, 3885–3892.
  25. Armagan, I.; Bayram, D.; Candan, I.A.; et al. Effects of Pentoxifylline and Alpha Lipoic Acid on Methotrexate-Induced Damage in Liver and Kidney of Rats. Environ. Toxicol. Pharmacol. 2015, 39, 1122–1131.
  26. Tanapat, P.; Hastings, N.B.; Reeves, A.J.; et al. Estrogen Stimulates a Transient Increase in the Number of New Neurons in the Dentate Gyrus of the Adult Female Rat. J. Neurosci. 1999, 19, 5792–5801.
  27. Elsawy, H.; Alzahrani, A.M.; Alfwuaires, M.; et al. Nephroprotective Effect of Naringin in Methotrexate-Induced Renal Toxicity in Male Rats. Biomed. Pharmacother. 2021, 143, 112180.
  28. Hussein, Y. Histological and Immunohistochemical Changes in the Hippocampus of the Adult Male Albino Rats Treated With Amethopterin and the Possible Protective Role of Moringa Leaves Extract. Egypt. J. Anat. 2017, 40, 294–300.
  29. Ebrahimi, R.; Sepand, M.R.; Seyednejad, S.A.; et al. Ellagic Acid Reduces Methotrexate-Induced Apoptosis and Mitochondrial Dysfunction via Up-Regulating Nrf2 Expression and Inhibiting the IĸBα/NFĸB in Rats. DARU J. Pharm. Sci. 2019, 27, 721–733.
  30. Noubissi, P.A.; Njilifac, Q.; Tagne, M.A.F.; et al. Protective Effects of Moringa Oleifera Against Acetic Acid-Induced Colitis in Rat: Inflammatory Mediators’ Inhibition and Preservation of the Colon Morphohistology. Pharmacol. Res. Nat. Prod. 2024, 3, 100038.
  31. Minaiyan, M.; Asghari, G.; Taheri, D.; et al. Anti-Inflammatory Effect of Moringa Oleifera Lam. Seeds on Acetic Acid-Induced Acute Colitis in Rats. Avicenna J. Phytomed. 2014, 4, 127–136.
  32. Abdel-Daim, M.M.; Khalifa, H.A.; Abushouk, A.I.; et al. Diosmin Attenuates Methotrexate‐Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice. Oxid. Med. Cell. Longev. 2017, 2017, 3281670.
  33. Wu, L.L.; Lin, D.N.; Yu, L.H.; et al. Endoplasmic Reticulum Stress Plays an Important Role in Methotrexate-Related Cognitive Impairment in Adult Rats. Int. J. Clin. Exp. Pathol. 2017, 10, 10252–10260.
  34. Molteni, M.; Gemma, S.; Rossetti, C. The Role of Toll‐Like Receptor 4 in Infectious and Noninfectious Inflammation. Mediators Inflamm. 2016, 2016, 6978936.
  35. Zhang, L.; Tang, Y.; Huang, P.; et al. Role of NLRP3 Inflammasome in Central Nervous System Diseases. Cell Biosci. 2024, 14, 75.
  36. Arici, S.; Karaman, S.; Dogru, S.; et al. Central Nervous System Toxicity After Acute Oral Formaldehyde Exposure in Rabbits: An Experimental Study. Hum. Exp. Toxicol. 2014, 33, 1141–1149.