Inactivation of Indoor Environmental Allergy‑Related Substances by Ozonated Water In Vitro

Trends in Immunotherapy

Article

Inactivation of Indoor Environmental Allergy‑Related Substances by Ozonated Water In Vitro

Murakami, Y., Tobi, Y., Emura, K., Baba, K., Taniguchi, M., & Furukawa, F. (2025). Inactivation of Indoor Environmental Allergy‑Related Substances by Ozonated Water In Vitro. Trends in Immunotherapy, 9(4), 214–225. https://doi.org/10.54963/ti.v9i4.1221

Authors

  • Yoshinobu Murakami

    Department of Aesthetics and Health Sciences, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
    Department of Natural Products Research, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
  • Yukio Tobi

    Haier Asia R&D Co., Ltd., 404-2 Oyabu-cho, Kuze, Minami-ku, Kyoto 601-8206, Japan
  • Kota Emura

    Haier Asia R&D Co., Ltd., 404-2 Oyabu-cho, Kuze, Minami-ku, Kyoto 601-8206, Japan
  • Kimiye Baba

    Department of Natural Products Research, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
  • Masahiko Taniguchi

    Department of Natural Products Research, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
  • Fukumi Furukawa

    Takatsuki Red Cross Hospital, 1-1-1 Abuno, Takatsuki, Osaka 569-1096, Japan
    Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan

Received: 8 May 2025; Revised: 3 June 2025; Accepted: 19 June 2025; Published: 2 December 2025

Allergic diseases are thought to be caused by a combination of acquired immune activation, excessive activation of innate immunity, and disruption of epithelial barrier function due to scratching, proteases, and more. The removal and inactivation of allergy-related substances in indoor environments are considered effective for reducing allergic disease symptoms. The typical allergens in Japan are Japanese cedar pollen and house dust mites (HDM), and together with bacteria and fungi, HDM are the main sources of proteases in indoor environments. We investigated the inactivating effects of ozonated water on these substances in vitro in terms of allergenicity, inflammation induction in epithelial and immune cell lines (i.e., HaCaT, A549, and RAW 264 cells), and protease activity. We observed that ozonated water inactivated the Japanese cedar pollen allergen Cry j1 and the HDM allergen Der f1, the innate immune activator lipoteichoic acid from the bacterium Staphylococcus aureus, and proteases from S. aureus, HDM, and the fungus Alternaria in an ozone concentration-dependent manner. In all experiments, ozonated water at 7.5 mg/L significantly inactivated allergy-related substances compared to the untreated group (p < 0.01). The comparison of the effects of ozonated water treatment and thermal treatment at 80 °C revealed that ozonated water treatment is superior to thermal treatment in terms of both effectiveness and reaction time. Together, our findings demonstrate that ozonated water can inactivate allergy-related substances in the indoor environment. The management of indoor environments using ozonated water can thus be expected to contribute to the alleviation of symptoms and suppression of allergic diseases.

Keywords:

Ozonated Water Allergic Disease Indoor Environment Inactivation Allergy-Related Substances

References

  1. Okano, M.; Fujieda, S.; Gotoh, M.; et al. Executive summary: Japanese guidelines for allergic rhinitis 2020. Allergol. Int. 2023, 72, 41–53. DOI: https://doi.org/10.1016/j.alit.2022.11.003
  2. Honda, T.; Kabashima, K. Reconciling innate and acquired immunity in atopic dermatitis. J. Allergy Clin. Immunol. 2020, 145, 1136–1137. DOI: https://doi.org/10.1016/j.jaci.2020.02.008
  3. Maeda, K.; Caldez, M.J.; Akira, S. Innate immunity in allergy. Allergy. 2019, 74, 1660–1674. DOI: https://doi.org/10.1111/all.13788
  4. Kubo, M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol. Rev. 2017, 278, 162–172. DOI: https://doi.org/10.1111/imr.12557
  5. Matsuda, A.; Ano, T.; Nakamura, Y.; et al. Ozone water has antibacterial properties in dogs without skin barrier impairment. Vet. Dermatol. 2025, 36, 1–10. DOI: https://doi.org/10.1111/vde.13339
  6. Lim, S.; Shi, J.L.; von Gunten, U.; et al. Ozonation of organic compounds in water and wastewater: A critical review. Water Res. 2022, 213, 118053. DOI: https://doi.org/10.1016/j.watres.2022.118053
  7. Nakamura, K.; Saito, K.; Kashiwazaki, J.; et al. Evaluation of ozonated water using ASTM E1174 for standardized testing of handwash formulations for healthcare personnel. J. Hosp. Infect. 2018, 100, 211–213. DOI: https://doi.org/10.1016/j.jhin.2018.02.009
  8. Iwakiri, R.; Tanaka, K.; Gotoda, T.; et al. Guidelines for standardizing cleansing and disinfection of gastrointestinal endoscopes. Dig. Endosc. 2019, 31, 477–497. DOI: https://doi.org/10.1111/den.13474
  9. Suh, Y.; Patel, S.; Kaitlyn, R.; et al. Clinical utility of ozone therapy in dental and oral medicine. Med. Gas Res. 2019, 9, 163–167. DOI: https://doi.org/10.4103/2045-9912.266997
  10. Kaneki, M.; Ohira, C.; Takahashi, M.; et al. Therapeutic potential of ozone water treatment in alleviating atopic dermatitis symptoms in mouse models: Exploring its bactericidal and direct anti-inflammatory properties. Int. Immunopharmacol. 2023, 124, 110920. DOI: https://doi.org/10.1016/j.intimp.2023.110920
  11. Zeng, J.; Dou, J.; Gao, L.; et al. Topical ozone therapy restores microbiome diversity in atopic dermatitis. Int. Immunopharmacol. 2020, 80, 106191. DOI: https://doi.org/10.1016/j.intimp.2020.106191
  12. Murakami, Y.; Azuma, S.; Baba, K.; et al. Activation of proteinase-activated receptor-2 (PAR-2) simultaneously induces interleukin 8 (IL-8) and suppresses monocyte chemoattractant protein-1 (MCP-1) in HaCaT cells. Trends Immunother. 2022, 6, 41–49. DOI: https://doi.org/10.24294/ti.v6.i1.1472
  13. Takai, T.; Kato, T.; Sakata, Y.; et al. Recombinant Der p 1 and Der f 1 exhibit cysteine protease activity but no serine protease activity. Biochem. Biophys. Res. Commun. 2005, 328, 944–952. DOI: https://doi.org/10.1016/j.bbrc.2005.01.051
  14. Murakami, Y.; Shimizu, M.; Ikada, Y. A new protease assay system using gelatin thin film for monitoring indoor air quality. J. Environ. Monit. 2011, 13, 328–333. DOI: https://doi.org/10.1039/c0em00424c
  15. Pawankar, R. Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organ. J. 2014, 7, 12. DOI: https://doi.org/10.1186/1939-4551-7-12
  16. Luo, C.; Peng, S.; Li, M.; et al. The efficacy and safety of probiotics for allergic rhinitis: A systematic review and meta-analysis. Front. Immunol. 2022, 13, 848279. DOI: https://doi.org/10.3389/fimmu.2022.848279
  17. Rakha, A.; Umar, N.; Rabail, R.; et al. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed. Pharmacother. 2022, 156, 113945. DOI: https://doi.org/10.1016/j.biopha.2022.113945
  18. Enomoto, T.; Sowa, M.; Nishimori, K.; et al. Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol. Int. 2014, 63, 575–585. DOI: https://doi.org/10.2332/allergolint.13-OA-0683
  19. Azuma, S.; Murakami, Y.; Azuma, E.; et al. Anti-inflammatory effects of flavonoids in Citrus jabara fruit peels. Trends Immunother. 2020, 4, 5–14. DOI: https://doi.org/10.24294/ti.v4.i1.844
  20. Inaba, Y.; Furukawa, F.; Azuma, S.; et al. Evaluation of the safety and usefulness of Citrus jabara fruit peel powder cream for patients with atopic dermatitis. Trends Immunother. 2020, 4, 42–46. DOI: https://doi.org/10.24294/ti.v4.i1.1230
  21. Azuma, S.; Murakami, Y.; Taniguchi, M.; et al. Daily intake of Citrus jabara fruit peel powder (Japanese Patent No. 5,323,127) improves allergy-like symptoms: A randomized double-blind parallel-group comparative study. Trends Immunother. 2021, 5, 21–31. DOI: https://doi.org/10.24294/ti.v5.i2.1390
  22. Matsuyama, K.; Matsuoka, T.; Kamijo, A. Current status of sublingual immunotherapy for allergic rhinitis in Japan. Allergol. Int. 2018, 67, 320–325. DOI: https://doi.org/10.1016/j.alit.2018.04.011
  23. Geoghegan, J.A.; Irvine, A.D.; Foster, T.J. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship. Trends Microbiol. 2018, 26, 484–497. DOI: https://doi.org/10.1016/j.tim.2017.11.008
  24. Kang, S.S.; Sim, J.R.; Yun, C.H.; et al. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch. Pharm. Res. 2016, 39, 1519–1529. DOI: https://doi.org/10.1007/s12272-016-0804-y
  25. Ouyang, X.; Reihill, J.A.; Douglas, L.E.J.; et al. Airborne indoor allergen serine proteases and their contribution to sensitisation and activation of innate immunity in allergic airway disease. Eur. Respir. Rev. 2024, 33, 230126. DOI: https://doi.org/10.1183/16000617.0126-2023
  26. Hirasawa, Y.; Takai, T.; Nakamura, T.; et al. Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. J. Invest. Dermatol. 2010, 130, 614–617. DOI: https://doi.org/10.1038/jid.2009.257
  27. Mahmoodi, M.; Pishbin, E. Ozone-based advanced oxidation processes in water treatment: Recent advances, challenges, and perspective. Environ. Sci. Pollut. Res. Int. 2025, 32, 3531–3570. DOI: https://doi.org/10.1007/s11356-024-35835-w
  28. Sharma, V.K.; Graham, N.J.D. Oxidation of amino acids, peptides and proteins by ozone: A review. Ozone: Sci. Eng. 2010, 32, 81–90. DOI: https://doi.org/10.1080/01919510903510507
  29. Hayakumo, S.; Arakawa, S.; Mano, Y.; et al. Clinical and microbiological effects of ozone nano-bubble water irrigation as an adjunct to mechanical subgingival debridement in periodontitis patients in a randomized controlled trial. Clin. Oral Investig. 2013, 17, 379–388. DOI: https://doi.org/10.1007/s00784-012-0711-7
  30. Maekawa, T.; Krauss, J.L.; Abe, T.; et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 2014, 15, 768–778. DOI: https://doi.org/10.1016/j.chom.2014.05.012
  31. Kashiwazaki, J.; Nakamura, K.; Hara, Y.; et al. Evaluation of the cytotoxicity of various hand disinfectants and ozonated water to human keratinocytes in a cultured epidermal model. Adv. Skin Wound Care 2020, 33, 313–318. DOI: https://doi.org/10.1097/01.ASW.0000658592.51430.ea
  32. Borges, G.Á.; Elias, S.T.; da Silva, S.M.M.; et al. In vitro evaluation of wound healing and antimicrobial potential of ozone therapy. J. Craniomaxillofac. Surg. 2017, 45, 364–370. DOI: https://doi.org/10.1016/j.jcms.2017.01.005
  33. Breidablik, H.J.; Lysebo, D.E.; Johannessen, L.; et al. Ozonized water as an alternative to alcohol-based hand disinfection. J. Hosp. Infect. 2019, 102, 419–424. DOI: https://doi.org/10.1016/j.jhin.2019.01.026
  34. Breidablik, H.J.; Lysebo, D.E.; Johannessen, L.; et al. Effects of hand disinfection with alcohol hand rub, ozonized water, or soap and water: Time for reconsideration? J. Hosp. Infect. 2020, 105, 213–215. DOI: https://doi.org/10.1016/j.jhin.2020.03.014
  35. Leon, B.R.; Romary, D.J.; Landsberger, S.A.; et al. Risks of ozonated oil and ozonated water on human skin: A systematic review. Int. Wound J. 2022, 19, 1901–1910. DOI: https://doi.org/10.1111/iwj.13760