Prevention and Treatment of COVID‑19 and Influenza with Bromhexine and High Doses of Colchicine

Trends in Immunotherapy

Review

Prevention and Treatment of COVID‑19 and Influenza with Bromhexine and High Doses of Colchicine

Mitev, V. (2025). Prevention and Treatment of COVID‑19 and Influenza with Bromhexine and High Doses of Colchicine. Trends in Immunotherapy, 9(3), 238–251. https://doi.org/10.54963/ti.v9i3.1162

Authors

  • Vanyo Mitev

    Research Institute of Innovative Medical Science, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University-Sofia, Sofia 1431, Bulgaria

Received: 14 April 2025; Revised: 14 May 2025; Accepted: 23 June 2025; Published: 9 September 2025

Despite great progress in understanding the mechanism of action of influenza and SARS-CoV-2 viruses, there is currently no effective prevention and treatment for the complications of influenza and COVID-19. The Transmembrane Protease Serine S1 subtype 2 (TMPRSS2) and NOD-like receptor protein 3 inflammasome (NLRP3-I) are the main targets for the prevention and treatment of COVID-19 and influenza. The TMPRSS2 is responsible for the penetration of the SARS-CoV-2 and influenza viruses into the cell, while the hyperactivation of the NLRP3 inflammasome can lead to a cytokine storm, multiorgan failure, and death. The correct strategy for preventing illness from COVID-19 and influenza is to block the TMPRSS2 preemptively. Preventing the cytokine storm in COVID-19 and influenza is only effective when inhibiting NLRP3-I. Long-term prophylaxis with the TMPRSS2 inhibitor bromhexine hydrochloride (BRH) proves sufficient to prevent SARS-CoV-2 and influenza infection largely. Treatment with high doses of colchicine, which is able to inhibit the NLRP3-I, leads to inhibition of the cytokine storm (CS) and significantly decreases mortality. Combined application of BRH and colchicine is a very effective, safe, and inexpensive method against the spread and complications of COVID-19 and influenza.

Keywords:

COVID‑19 Influenza Bromhexine TMPRSS2 NLRP3 Inflammasome Prophylactics Colchicine

References

  1. Johnson, N.P.A.S.; Mueller, J. Updating the Accounts: Global Mortality of the 1918–1920 “Spanish” Influenza Pandemic. Bull. Hist. Med. 2002, 76, 105–115.
  2. World Health Organization. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 30 May 2025).
  3. Adam, D. The Pandemic’s True Death Toll: Millions More than Official Counts. Nature 2022, 601, 312–315.
  4. World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 30 May 2025).
  5. Di Cera, E. Serine Proteases. IUBMB Life 2009, 61, 510–515.
  6. Bugge, T.H.; Antalis, T.M.; Wu, Q. Type II Transmembrane Serine Proteases. J. Biol. Chem. 2009, 284, 23177–23181.
  7. Fraser, B.J.; Beldar, S.; Seitova, A.; et al. Structure and Activity of Human TMPRSS2 Protease Implicated in SARS-CoV-2 Activation. Nat. Chem. Biol. 2022, 18, 963–971.
  8. Li, X.; He, L.; Luo, J.; et al. Paeniclostridium sordellii Hemorrhagic Toxin Targets TMPRSS2 to Induce Colonic Epithelial Lesions. Nat. Commun. 2022, 13, 1–11.
  9. Harbig, A.; Mernberger, M.; Bittel, L.; et al. Transcriptome Profiling and Protease Inhibition Experiments Identify Proteases That Activate H3N2 Influenza A and Influenza B Viruses in Murine Airways. J. Biol. Chem. 2020, 295, 11388–11407.
  10. Sungnak, W.; Huang, N.; Bécavin, C.; et al. SARS-CoV-2 Entry Factors Are Highly Expressed in Nasal Epithelial Cells Together with Innate Immune Genes. Nat. Med. 2020, 26, 681–687.
  11. Donaldson, S.H.; Hirsh, A.; Li, D.C.; et al. Regulation of the Epithelial Sodium Channel by Serine Proteases in Human Airways. J. Biol. Chem. 2002, 277, 8338–8345.
  12. Sure, F.; Bertog, M.; Afonso, S.; et al. Transmembrane Serine Protease 2 (TMPRSS2) Proteolytically Activates the Epithelial Sodium Channel (ENaC) by Cleaving the Channel’s γ-Subunit. J. Biol. Chem. 2022, 298, 102004.
  13. Kim, T.S.; Heinlein, C.; Hackman, R.C.; et al. Phenotypic Analysis of Mice Lacking the Tmprss2-Encoded Protease. Mol. Cell. Biol. 2006, 26, 965–975.
  14. Tandefelt, D.G.; Boormans, J.; Hermans, K.; et al. ETS Fusion Genes in Prostate Cancer. Endocr. Relat. Cancer 2014, 21, R143–R152.
  15. Wang, Z.; Wang, Y.; Zhang, J.; et al. Significance of the TMPRSS2:ERG Gene Fusion in Prostate Cancer. Mol. Med. Rep. 2017, 16, 5450–5458.
  16. Esumi, M.; Ishibashi, M.; Yamaguchi, H.; et al. Transmembrane Serine Protease TMPRSS2 Activates Hepatitis C Virus Infection. Hepatology 2015, 61, 437–446.
  17. Melis, M.; Diaz, G.; Kleiner, D.E.; et al. Viral Expression and Molecular Profiling in Liver Tissue versus Microdissected Hepatocytes in Hepatitis B Virus-Associated Hepatocellular Carcinoma. J. Transl. Med. 2014, 12, 1–11.
  18. Hamamoto, Y.; Kawamura, M.; Uchida, H.; et al. Increased ACE2 and TMPRSS2 Expression in Ulcerative Colitis. Pathol. Res. Pract. 2024, 254, 155108.
  19. Hoang, T.; Nguyen, T.Q.; Tran, T.T.A. Genetic Susceptibility of ACE2 and TMPRSS2 in Six Common Cancers and Possible Impacts on COVID-19. Cancer Res. Treat. 2020, 53, 650–656.
  20. Barros, G.; Nencioni, E.; Thimoteo, F.; et al. TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules 2025, 15, 75.
  21. Zhang, N.; Fang, S.; Wang, T.; et al. Applicability of a Sensitive Duplex Real-Time PCR Assay for Identifying B/Yamagata and B/Victoria Lineages of Influenza Virus from Clinical Specimens. Appl. Microbiol. Biotechnol. 2011, 93, 797–805.
  22. Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 1–21.
  23. Böttcher-Friebertshäuser, E.; Garten, W.; Matrosovich, M.; et al. The Hemagglutinin: A Determinant of Pathogenicity. In Influenza Pathogenesis and Control; Compans, R.W., Oldstone, M.B.A., Eds.; Springer: New York, NY, USA, 2014; 1, pp. 3–34.
  24. Böttcher, E.; Matrosovich, T.; Beyerle, M.; et al. Proteolytic Activation of Influenza Viruses by Serine Proteases TMPRSS2 and HAT from Human Airway Epithelium. J. Virol. 2006, 80, 9896–9898.
  25. Limburg, H.; Harbig, A.; Bestle, D.; et al. TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. J. Virol. 2019, 93, e01238-19.
  26. Shen, L.W.; Mao, H.J.; Wu, Y.L.; et al. TMPRSS2: A Potential Target for Treatment of Influenza Virus and Coronavirus Infections. Biochimie 2017, 142, 1–10.
  27. Bi, Y.; Yang, J.; Wang, L.; et al. Ecology and Evolution of Avian Influenza Viruses. Curr. Biol. 2024, 34, R716–R721.
  28. Abe, M.; Tahara, M.; Sakai, K.; et al. TMPRSS2 Is an Activating Protease for Respiratory Parainfluenza Viruses. J. Virol. 2013, 87, 11930–11935.
  29. Schwerdtner, M.; Schmacke, L.C.; Nave, J.; et al. Unveiling the Role of TMPRSS2 in the Proteolytic Activation of Pandemic and Zoonotic Influenza Viruses and Coronaviruses in Human Airway Cells. Viruses 2024, 16, 1798.
  30. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.
  31. Mitev, V.; Mondeshki, T.; Miteva, A.; et al. COVID-19 Prophylactic Effect of Bromhexine Hydrochloride. Prepr. 2024, 1–15.
  32. Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; et al. Inhibitors of Cathepsin L Prevent Severe Acute Respiratory Syndrome Coronavirus Entry. Proc. Natl. Acad. Sci. 2005, 102, 11876–11881.
  33. Simmons, G.; Zmora, P.; Gierer, S.; et al. Proteolytic Activation of the SARS-Coronavirus Spike Protein: Cutting Enzymes at the Cutting Edge of Antiviral Research. Antiviral Res. 2013, 100, 605–614.
  34. Du, L.; Kao, R.Y.; Zhou, Y.; et al. Cleavage of Spike Protein of SARS Coronavirus by Protease Factor Xa is Associated With Viral Infectivity. Biochem. Biophys. Res. Commun. 2007, 359, 174–179.
  35. Koch, J.; Uckeley, Z.M.; Doldan, P.; et al. TMPRSS2 Expression Dictates the Entry Route Used by SARS‐CoV‐2 to Infect Host Cells. EMBO J. 2021, 40, e107821.
  36. Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78, 779–784.
  37. Mykytyn, A.Z.; Breugem, T.I.; Geurts, M.H.; et al. SARS-CoV-2 Omicron Entry is Type II Transmembrane Serine Protease-Mediated in Human Airway and Intestinal Organoid Models. J. Virol. 2023, 97, e0085123.
  38. Ou, X.; Liu, Y.; Lei, X.; et al. Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and Its Immune Cross-Reactivity With SARS-CoV. Nat. Commun. 2020, 11, 1620.
  39. Maggio, R.; Corsini, G.U. Repurposing the Mucolytic Cough Suppressant and TMPRSS2 Protease Inhibitor Bromhexine for the Prevention and Management of SARS-CoV-2 Infection. Pharmacol. Res. 2020, 157, 104837.
  40. Depfenhart, M. A SARS-CoV-2 Prophylactic and Treatment; A Counter Argument Against the Sole Use of Chloroquine. Am. J. Biomed. Sci. Res. 2020, 8, 248–251.
  41. Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; et al. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J. Virol. 2019, 93, e01815-18.
  42. Breining, P.; Frølund, A.L.; Højen, J.F.; et al. Camostat Mesylate against SARS‐CoV‐2 and COVID‐19—Rationale, Dosing and Safety. Basic Clin. Pharmacol. Toxicol. 2020, 128, 204–212.
  43. Tobback, E.; Degroote, S.; Buysse, S.; et al. Efficacy and Safety of Camostat Mesylate in Early COVID-19 Disease in an Ambulatory Setting: A Randomized Placebo-Controlled Phase II Trial. Int. J. Infect. Dis. 2022, 122, 628–635.
  44. Khan, U.; Mubariz, M.; Khlidj, Y.; et al. Safety and Efficacy of Camostat Mesylate for COVID-19: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Infect. Dis. 2024, 24, 547.
  45. Kinoshita, T.; Shinoda, M.; Nishizaki, Y.; et al. A Multicenter, Double-Blind, Randomized, Parallel-Group, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Camostat Mesilate in Patients With COVID-19 (CANDLE study). BMC Med. 2022, 20, 362.
  46. Chupp, G.; Spichler-Moffarah, A.; Søgaard, O.S.; et al. A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of Oral Camostat Mesylate for Early Treatment of COVID-19 Outpatients Showed Shorter Illness Course and Attenuation of Loss of Smell and Taste. medRxiv 2022, 2022, 22270035.
  47. Marinov, K.; Mondeshki, T.; Georgiev, H.; et al. Effects of Long-Term Prophylaxis with Bromhexine Hydrochloride and Treatment with High Colchicine Doses of COVID-19. Pharmacia 2025, 72, 1–10.
  48. Mitev, V. Comparison of Treatment of COVID-19 with Inhaled Bromhexine, Higher Doses of Colchicine and Hymecromone with WHO-Recommended Paxlovid, Molnupiravir, Remdesivir, Anti-IL-6 Receptor Antibodies and Baricitinib. Pharmacia 2023, 70, 1177–1193.
  49. Depfenhart, M.; de Villiers, D.; Lemperle, G.; et al. Potential New Treatment Strategies for COVID-19: Is There a Role for Bromhexine as Add-On Therapy? Intern. Emerg. Med. 2020, 15, 801–812.
  50. Ansarin, K.; Tolouian, R.; Ardalan, M.; et al. Effect of Bromhexine on Clinical Outcomes and Mortality in COVID-19 Patients: A Randomized Clinical Trial. Bioimpacts 2020, 10, 209–215.
  51. Ghayour, A.E.; Nazari, S.; Keramat, F.; et al. Evaluation of the Efficacy of N-Acetylcysteine and Bromhexine Compared with Standard Care in Preventing Hospitalization of Outpatients with COVID-19: A Double Blind Randomized Clinical Trial. Rev. Clin. Esp. 2024, 224, 86–95.
  52. Fu, Q.; Zheng, X.; Zhou, Y.; et al. Re-Recognizing Bromhexine Hydrochloride: Pharmaceutical Properties and Its Possible Role in Treating Pediatric COVID-19. Eur. J. Clin. Pharmacol. 2021, 77, 261–263.
  53. Tolouian, R.; Moradi, O.; Mulla, Z.D.; et al. Bromhexine, for Post Exposure COVID-19 Prophylaxis: A Randomized, Double-Blind, Placebo Control Trial. Res. Sq. 2022.
  54. Tolouian, R.; Mulla, Z.D. Controversy with Bromhexine in COVID-19; Where We Stand. Immunopathol. Persa 2020, 7, e12–2.
  55. Ogbac, M.K.; Tamayo, J.E. Effect of Bromhexine Among COVID-19 Patients – A Meta-Analysis. Korean J. Tuberc. Respir. Dis. 2021, 129, 412–412.
  56. Méndez, M.L.V.; Sanz, C.A.; García, A.D.R.C.; et al. Efficacy of Bromhexine versus Standard of Care in Reducing Viral Load in Patients with Mild-to-Moderate COVID-19 Disease Attended in Primary Care: A Randomized Open-Label Trial. J. Clin. Med. 2022, 12, 142.
  57. Mitev, V. Colchicine—The Divine Medicine Against COVID-19. J. Pers. Med. 2024, 14, 756–756.
  58. Bisolvon Chesty Forte. Available online: https://www.medsafe.govt.nz/profs/datasheet/b/bisolvontabsol.pdf (accessed on 30 May 2025).
  59. Duan, Y.; Wang, J.; Cai, J.; et al. The Leucine-Rich Repeat (LRR) Domain of NLRP3 is Required for NLRP3 Inflammasome Activation in Macrophages. J. Biol. Chem. 2022, 298, 102717.
  60. Kelley, N.; Jeltema, D.; Duan, Y.; et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328.
  61. Akbal, A.; Dernst, A.; Lovotti, M.; et al. How Location and Cellular Signaling Combine to Activate the NLRP3 Inflammasome. Cell. Mol. Immunol. 2022, 19, 1201–1214.
  62. Ichinohe, T.; Lee, H.K.; Ogura, Y.; et al. Inflammasome Recognition of Influenza Virus is Essential for Adaptive Immune Responses. J. Exp. Med. 2009, 206, 79–87.
  63. Allen, I.C.; Scull, M.A.; Moore, C.B.; et al. The NLRP3 Inflammasome Mediates In Vivo Innate Immunity to Influenza A Virus through Recognition of Viral RNA. Immunity 2009, 30, 556–565.
  64. Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489.
  65. Dadkhah, M.; Sharifi, M. The NLRP3 Inflammasome: Mechanisms of Activation, Regulation, and Role in Diseases. Int. Rev. Immunol. 2024, 44, 98–111.
  66. Franchi, L.; Eigenbrod, T.; Núñez, G. Cutting Edge: TNF-α Mediates Sensitization to ATP and Silica via the NLRP3 Inflammasome in the Absence of Microbial Stimulation. J. Immunol. 2009, 183, 792–796.
  67. Tate, M.D.; Mansell, A. An Update on the NLRP3 Inflammasome and Influenza: The Road to Redemption or Perdition? Curr. Opin. Immunol. 2018, 54, 80–85.
  68. Beesetti, S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. Front. Biosci.-Landmark 2025, 30, 25970.
  69. Bauernfeind, F.G.; Horvath, G.; Stutz, A.; et al. Cutting Edge: NF-KappaB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. J. Immunol. 2009, 183, 787–791.
  70. Liu, X.; Wang, H.; Shi, S.; et al. Association between IL-6 and Severe Disease and Mortality in COVID-19 Disease: A Systematic Review and Meta-Analysis. Postgrad. Med. J. 2021, 98, 871–879.
  71. Tosato, G.; Jones, K. Interleukin-1 Induces Interleukin-6 Production in Peripheral Blood Monocytes. Blood 1990, 75, 1305–1310.
  72. Chen, W.; Zheng, K.I.; Liu, S.; et al. Plasma CRP Level is Positively Associated with the Severity of COVID-19. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 18.
  73. Manson, J.J.; Crooks, C.; Naja, M.; et al. COVID-19-Associated Hyperinflammation and Escalation of Patient Care: A Retrospective Longitudinal Cohort Study. Lancet Rheumatol. 2020, 2, e594–602.
  74. Slaats, J.; Oever, J.T.; van de Veerdonk, F.L.; et al. IL-1β/IL-6/CRP and IL-18/Ferritin: Distinct Inflammatory Programs in Infections. PLoS Pathog. 2016, 12, e1005973.
  75. Potere, N.; Del Buono, M.G.; Caricchio, R.; et al. Interleukin-1 and the NLRP3 Inflammasome in COVID-19: Pathogenetic and Therapeutic Implications. eBioMedicine 2022, 85, 104299.
  76. Yin, M.; Marrone, L.; Peace, C.G.; et al. NLRP3, the Inflammasome and COVID-19 Infection. QJM 2023, 116, 502–507.
  77. Xu, H.; Akinyemi, I.A.; Chitre, S.A.; et al. SARS-CoV-2 Viroporin Encoded by ORF3a Triggers the NLRP3 Inflammatory Pathway. Virology 2022, 568, 13–22.
  78. Guarnieri, J.W.; Angelin, A.; Murdock, D.G.; et al. SARS-CoV-2 Viroporins Activate the NLRP3-Inflammasome by the Mitochondrial Permeability Transition Pore. Front. Immunol. 2023, 14, 1064293.
  79. Pan, P.; Shen, M.; Yu, Z.; et al. SARS-CoV-2 N Protein Promotes NLRP3 Inflammasome Activation to Induce Hyperinflammation. Nat. Commun. 2021, 12, 4664.
  80. Sun, X.; Liu, Y.; Huang, Z.; et al. SARS-CoV-2 Non-Structural Protein 6 Triggers NLRP3-Dependent Pyroptosis by Targeting ATP6AP1. Cell Death Differ. 2022, 29, 1240–1254.
  81. Theobald, S.; Simonis, A.; Georgomanolis, T.; et al. Long-Lived Macrophage Reprogramming Drives Spike Protein-Mediated Inflammasome Activation in COVID-19. EMBO Mol. Med. 2021, 13, e14150.
  82. Eisfeld, H.S.; Simonis, A.; Winter, S.; et al. Viral Glycoproteins Induce NLRP3 Inflammasome Activation and Pyroptosis in Macrophages. Viruses 2021, 13, 2076.
  83. Planès, R.; Pinilla, M.; Santoni, K.; et al. Human NLRP1 Is a Sensor of Pathogenic Coronavirus 3CL Proteases in Lung Epithelial Cells. Mol. Cell 2022, 82, 2385–2400.e9.
  84. Ambrożek-Latecka, M.; Kozlowski, P.; Hoser, G.; et al. SARS-CoV-2 and Its ORF3a, E and M Viroporins Activate Inflammasome in Human Macrophages and Induce IL-1α in Pulmonary Epithelial and Endothelial Cells. Cell Death Discov. 2024, 10, 191.
  85. Cerato, J.A.; da Silva, E.F.; Porto, B.N. Breaking Bad: Inflammasome Activation by Respiratory Viruses. Biology 2023, 12, 943.
  86. Sefik, E.; Qu, R.; Junqueira, C.; et al. Inflammasome Activation in Infected Macrophages Drives COVID-19 Pathology. Nature 2022, 604, 585–593.
  87. Song, H.; Liu, B.; Huai, W.; et al. The E3 Ubiquitin Ligase TRIM31 Attenuates NLRP3 Inflammasome Activation by Promoting Proteasomal Degradation of NLRP3. Nat. Commun. 2016, 7, 13727.
  88. Cai, B.; Zhao, J.; Zhang, Y.; et al. USP5 Attenuates NLRP3 Inflammasome Activation by Promoting Autophagic Degradation of NLRP3. Autophagy 2021, 18, 990–1004.
  89. Paik, S.; Kim, J.K.; Silwal, P.; et al. An Update on the Regulatory Mechanisms of NLRP3 Inflammasome Activation. Cell. Mol. Immunol. 2021, 18, 1141–1160.
  90. Yang, Y.; Wang, H.; Kouadir, M.; et al. Recent Advances in the Mechanisms of NLRP3 Inflammasome Activation and Its Inhibitors. Cell Death Dis. 2019, 10, 128.
  91. Ji, X.; Song, Z.; He, J.; et al. NIMA-Related Kinase 7 Amplifies NLRP3 Inflammasome Pro-Inflammatory Signaling in Microglia/Macrophages and Mice Models of Spinal Cord Injury. Exp. Cell Res. 2020, 398, 112418.
  92. Zhang, E.; Li, X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front. Immunol. 2022, 13, 728794.
  93. Kim, S.K. The Mechanism of the NLRP3 Inflammasome Activation and Pathogenic Implication in the Pathogenesis of Gout. J. Rheum. Dis. 2022, 29, 140–153.
  94. Pan, X.; Wu, S.; Wei, W.; et al. Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease. Biomolecules 2022, 12, 910.
  95. Palazón-Riquelme, P.; Worboys, J.D.; Green, J.; et al. USP7 and USP47 Deubiquitinases Regulate NLRP3 Inflammasome Activation. EMBO Rep. 2018, 19, e44766.
  96. Martens, A.; van Loo, G. A20 at the Crossroads of Cell Death, Inflammation, and Autoimmunity. Cold Spring Harb. Perspect. Biol. 2019, 12, a036418.
  97. Song, N.; Li, T. Regulation of NLRP3 Inflammasome by Phosphorylation. Front. Immunol. 2018, 9, 2305.
  98. Zhang, Z.; Meszaros, G.; He, W.; et al. Protein Kinase D at the Golgi Controls NLRP3 Inflammasome Activation. J. Exp. Med. 2017, 214, 2671–2693.
  99. Song, N.; Liu, Z.S.; Xue, W.; et al. NLRP3 Phosphorylation Is an Essential Priming Event for Inflammasome Activation. Mol. Cell 2017, 68, 185–197.
  100. Spalinger, M.R.; Kasper, S.; Gottier, C.; et al. NLRP3 Tyrosine Phosphorylation Is Controlled by Protein Tyrosine Phosphatase PTPN22. J. Clin. Invest. 2016, 126, 1783–1800.
  101. McKee, C.M.; Fischer, F.A.; Bezbradica, J.S.; et al. PHOrming the Inflammasome: Phosphorylation Is a Critical Switch in Inflammasome Signalling. Biochem. Soc. Trans. 2021, 49, 2495–2507.
  102. Guarda, G.; Braun, M.; Staehli, F.; et al. Type I Interferon Inhibits Interleukin-1 Production and Inflammasome Activation. Immunity 2011, 34, 213–223.
  103. Masters, S.L.; Mielke, L.A.; Cornish, A.L.; et al. Regulation of Interleukin-1β by Interferon-γ Is Species Specific, Limited by Suppressor of Cytokine Signalling 1 and Influences Interleukin-17 Production. EMBO Rep. 2010, 11, 640–646.
  104. Lee, J.S.; Shin, E.C. The Type I Interferon Response in COVID-19: Implications for Treatment. Nat. Rev. Immunol. 2020, 20, 585–586.
  105. Wang, N.; Zhan, Y.; Zhu, L.; et al. Retrospective Multicenter Cohort Study Shows Early Interferon Therapy is Associated with Favorable Clinical Responses in COVID-19 Patients. Cell Host Microbe 2020, 28, 455–464.e2.
  106. Vora, S.M.; Lieberman, J.; Wu, H. Inflammasome Activation at the Crux of Severe COVID-19. Nat. Rev. Immunol. 2021, 21, 694–703.
  107. Tate, M.D.; Ong, J.D.H.; Dowling, J.K.; et al. Reassessing the Role of the NLRP3 Inflammasome during Pathogenic Influenza A Virus Infection via Temporal Inhibition. Sci. Rep. 2016, 6, 27912.
  108. Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alkazmi, L.; et al. High-Mobility Group Box 1 (HMGB1) in COVID-19: Extrapolation of Dangerous Liaisons. Inflammopharmacology 2022, 30, 811–820.
  109. Trak, A.; Şahiner, E.S.; Unal, E.; et al. Association between Serum HMGB1 (High Mobility Group Box-1) Levels and Clinical Course in Patients with COVID-19. Ankara City Hosp. Med. J. 2023, 2, 105–110.
  110. Huang, Y.; Wang, A.; Jin, S.; et al. Activation of the NLRP3 Inflammasome by HMGB1 through Inhibition of the Nrf2/HO-1 Pathway Promotes Bleomycin-Induced Pulmonary Fibrosis after Acute Lung Injury in Rats. Allergol. Immunopathol. 2023, 51, 56–67.
  111. Wang, R.; Wu, W.; Li, W.; et al. Activation of NLRP3 Inflammasome Promotes Foam Cell Formation in Vascular Smooth Muscle Cells and Atherogenesis via HMGB1. J. Am. Heart Assoc. 2018, 7, e008596.
  112. Chen, R.; Kang, R.; Tang, D. The Mechanism of HMGB1 Secretion and Release. Exp. Mol. Med. 2022, 54, 91–102.
  113. Nakakubo, S.; Unoki, Y.; Kitajima, K.; et al. Serum Lactate Dehydrogenase Level One Week after Admission Is the Strongest Predictor of Prognosis of COVID-19: A Large Observational Study Using the COVID-19 Registry Japan. Viruses 2023, 15, 671.
  114. Mitev, V.; Marinov, K.; Tiholov, R.; et al. High Colchicine Doses Are More Effective in COVID-19 Outpatients than Nirmatrelvir/Ritonavir, Remdesivir, and Molnupiravir. Prepr. 2024, 1–18.
  115. Mondeshki, T.; Bilyukov, R.; Tomov, T.; et al. Complete, Rapid Resolution of Severe Bilateral Pneumonia and Acute Respiratory Distress Syndrome in a COVID-19 Patient: Role for a Unique Therapeutic Combination of Inhalations with Bromhexine, Higher Doses of Colchicine, and Hymecromone. Cureus 2022, 14, e30269.
  116. Mitev, V.; Tsanko, M.; Marinov, K.; et al. Colchicine, Bromhexine, and Hymecromone as Part of COVID-19 Treatment—Cold, Warm, Hot. 2023, 10, 106–114.
  117. Tiholov, R.; Lilov, A.I.; Georgieva, G.; et al. Effect of Increasing Doses of Colchicine on the Treatment of 333 COVID-19 Inpatients. Immun. Inflamm. Dis. 2024, 12, e1273.
  118. Mitev, V.; Mondeshki, T.; Miteva, A.; et al. COVID-19 Prophylactic Effect of Bromhexine Hydrochloride. Prepr. 2024, 1–15.
  119. Han, Y.; Guo, J.; Li, X.; et al. Differences in Clinical Characteristics Between Coronavirus Disease 2019 (COVID-19) and Influenza: A Systematic Review and Meta-Analysis. NPJ Prim. Care Respir. Med. 2025, 35, 8.
  120. Bai, Y.; Tao, X. Comparison of COVID-19 and Influenza Characteristics. J. Zhejiang Univ. Sci. B 2021, 22, 87–98.
  121. Lee, H.Y.; Chen, C.C.; Ko, S.H.; et al. Epidemiology and Clinical Characteristics of Laboratory-Confirmed COVID-19 and Influenza Infections in Children: A 2015–2024 Study in Taiwan. Microorganisms 2025, 13, 517.
  122. Smart, S.J.; Polachek, S.W. COVID-19 Vaccine and Risk-Taking. J. Risk Uncertain. 2024, 68, 25–49.
  123. Kelleni, M.T. SARS-CoV-2 Viral Load Might Not Be the Right Predictor of COVID-19 Mortality. J. Infect. 2020, 82, e35.
  124. Bonaventura, A.; Vecchié, A.; Dagna, L.; et al. Colchicine for COVID-19: Targeting NLRP3 Inflammasome to Blunt Hyperinflammation. Inflamm. Res. 2022, 71, 293–307.
  125. C19early.org. Available online: https://c19early.org/ometa.html (accessed on 30 May 2025).
  126. Perricone, C.; Scarsi, M.; Brucato, A.; et al. Treatment with Colchicine in Hospitalized Patients Affected by COVID-19: The COLVID-19 Trial. Eur. J. Intern. Med. 2023, 107, 30–36.
  127. Lilov, A.; Palaveev, K.; Mitev, V. High Doses of Colchicine Act as “Silver Bullets” Against Severe COVID-19. Cureus 2024, 16, e54441.
  128. Mondeshki, T.; Mitev, V. High-Dose Colchicine: Key Factor in the Treatment of Morbidly Obese COVID-19 Patients. Cureus 2024, 16, e58164.
  129. Mitev, V. High Colchicine Doses Are Really Silver Bullets Against COVID-19. Acta Med. Bulg. 2024, 51, 95–96.
  130. Lippi, G.; Mattiuzzi, C.; Sanchis-Gomar, F. COVID-19 and Obesity: 2025 Perspective on Epidemiology, Pathogenesis, and Public Health Implications. J. Lab. Precis. Med. 2025, 10, 6.
  131. Bulanov, D.; Yonkov, A.; Arabadzhieva, E.; et al. Successful Treatment with High-Dose Colchicine of a 101-Year-Old Patient Diagnosed with COVID-19 After an Emergency Cholecystectomy. Cureus 2024, 16, e63201.
  132. Mondeshki, T.; Bilyukov, R.; Mitev, V. Effect of an Accidental Colchicine Overdose in a COVID-19 Inpatient with Bilateral Pneumonia and Pericardial Effusion. Cureus 2023, 15, e35909.
  133. Mitev, V. What is the Lowest Lethal Dose of Colchicine? Biotechnol. Biotechnol. Equip. 2023, 37, 2288240.
  134. Mitev, V. Prevention and treatment of COVID-19 and influenza with bromhexine and colchicine. Medizina i Sport. 2025, in press.
  135. Mitev, V. Prevention and Treatment of COVID-19 and Influenza with Bromhexine and High Doses of Colchicine. 2025, Preprints. DOI: https://doi.org/10.20944/preprints202504.1220.v1
  136. Teschke, R.; Méndez-Sánchez, N.; Eickhoff, A. Liver Injury in COVID-19 Patients with Drugs as Causatives: A Systematic Review of 996 DILI Cases Published 2020/2021 Based on RUCAM as Causality Assessment Method. Int. J. Mol. Sci. 2022, 23, 4828.
  137. Teschke, R.; Eickhoff, A. COVID-19 and Suspected Drug-Induced Liver Injury. In Features, Transmission, Detection, and Case Studies in COVID-19; Rajendram, R., Preedy, V.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2024; pp. 267–285.
  138. Sodeifian, F.; Seyedalhosseini, Z.S.; Kian, N.; et al. Drug-Induced Liver Injury in COVID-19 Patients: A Systematic Review. Front. Med. 2021, 8, 731436.
  139. Ahmed-Khan, M.A.; Matar, G.; Coombes, K.; et al. Remdesivir-Associated Acute Liver Failure in a COVID-19 Patient: A Case Report and Literature Review. Cureus 2023, 15, e0.
  140. National Library of Medicine. Available online: https://pubmed.ncbi.nlm.nih.gov/31643176 (accessed on 30 May 2025).
  141. Abbott, C.E.; Xu, R.; Sigal, S.H. Colchicine-Induced Hepatotoxicity. ACG Case Rep. J. 2017, 4, e120.
  142. Terkeltaub, R.A.; Furst, D.E.; Bennett, K.; et al. High Versus Low Dosing of Oral Colchicine for Early Acute Gout Flare: Twenty-Four-Hour Outcome of the First Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Dose-Comparison Colchicine Study. Arthritis Rheum. 2010, 62, 1060–1068.
  143. Habtemariam, S.; Nabavi, S.F.; Ghavami, S.; et al. Possible Use of the Mucolytic Drug, Bromhexine Hydrochloride, as a Prophylactic Agent Against SARS-CoV-2 Infection Based on Its Action on the Transmembrane Serine Protease 2. Pharmacol. Res. 2020, 157, 104853.