Bacterial Community Diversity, Richness, and Possible Immunotherapies Association in Response to Spray-Dried Porcine Plasma-Fed Diet: An Animal Model

Trends in Immunotherapy

Review Article

Bacterial Community Diversity, Richness, and Possible Immunotherapies Association in Response to Spray-Dried Porcine Plasma-Fed Diet: An Animal Model

Alina, P., Qasim, I. G., Mohammed, S. A., Mohammed, S. S., Nassar, W., & Nazir, N. K. (2025). Bacterial Community Diversity, Richness, and Possible Immunotherapies Association in Response to Spray-Dried Porcine Plasma-Fed Diet: An Animal Model. Trends in Immunotherapy, 9(4), 160–173. https://doi.org/10.54963/ti.v9i4.1034

Authors

  • Pirmatova Alina

    Department of Internal Medicine, Osh State University, Osh 723500, Kyrgyzstan
  • Imad Ghanem Qasim

    Department of Medical Laboratory Analysis, Al Mansour University College, Baghdad 10067, Iraq
  • Sura Akram Mohammed

    Department of Medical Laboratory Analysis, Al-Turath University, Baghdad 10013, Iraq
  • Samer Shukur Mohammed

    Department of Medical Laboratory Analysis, Al-Rafidain University College Baghdad 10064, Iraq
  • Waleed Nassar

    Department of Medical Laboratory Analysis, Madenat Alelem University College, Baghdad 10006, Iraq
  • Nazarzoda Khusin Nazir

    Department of Environmental Health, Tajik State University, Dushanbe 734025, Tajikistan

Received: 16 February 2025; Revised: 6 May 2025; Accepted: 1 July 2025; Published: 14 November 2025

This study aims to demonstrate the significance of employing non-invasive dietary intervention to control the diversity and abundance of bacterial communities in feces. The indexing databases Scopus, PubMed/Medline, ISI Web of Science, Embase, Cochrane Central, and CINAHL were extensively searched.  Only 13 of 541 papers found in the initial searches met the criteria. Seven studies involving 210 animals were included in this meta-analysis. The SDPP group showed statistically lower Shannon (SMD: 1.20, 95% CI: 0.22–2.19, I2: 88%, p = 0.02) and Chao1 (SMD: 2.95, 95% CI: 1.99–3.91, I2: 77%, p < 0.00001) indices than the control group.  The SDPP-diet fed group showed notably lower OTU counts compared to the control group (SMD: 2.99, 95% CI: 0.67–5.32, I2: 97%, p = 0.01). The Firmicutes/Bacteroidetes ratio is reliably increased following the SDPP-fed diet (SMD: 0.68, 95% CI: 0.13–1.23, I2: 0%, p = 0.02). While noticeable differences existed between studies and difficulties were encountered in replicating basic ecological measurements, the purpose of this analysis was to identify the consistent characteristics of the gut microbiota's response to the SDPP diet, thereby pinpointing specific areas for further mechanistic research.

Keywords:

Spray-Dried Porcine Plasma (SDPP) Intestinal Health Animal Model Meta-Analysis

References

  1. Johnson, K.V.A. Gut Microbiome Composition and Diversity Are Related to Human Personality Traits. Hum. Microbiome J. 2020, 15, 100069.
  2. Zhang, C.; Zhang, M.; Wang, S.; et al. Interactions Between Gut Microbiota, Host Genetics and Diet Relevant to Development of Metabolic Syndromes in Mice. ISME J. 2010, 4, 232–241.
  3. Rothschild, D.; Weissbrod, O.; Barkan, E.; et al. Environment Dominates Over Host Genetics in Shaping Human Gut Microbiota. Nature 2018, 555, 210–215.
  4. David, L.A.; Materna, A.C.; Friedman, J.; et al. Erratum to: Host Lifestyle Affects Human Microbiota on Daily Timescales. Genome Biol. 2016, 17, 117.
  5. Jurasinski, G.; Retzer, V.; Beierkuhnlein, C. Inventory, Differentiation, and Proportional Diversity: A Consistent Terminology for Quantifying Species Diversity. Oecologia 2009, 159, 15–26.
  6. Kiflawi, M.; Spencer, M. Confidence Interval and Hypothesis Testing for Beta Diversity. Ecology 2004, 85, 2895–2900.
  7. Andermann, T.; Antonelli, A.; Barrett, R.L.; et al. Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Front. Plant Sci. 2022, 13, 839407.
  8. Spencer, C.N.; McQuade, J.L.; Gopalakrishnan, V.; et al. Dietary Fiber and Probiotics Influence the Gut Microbiome and Melanoma Immunotherapy Response. Science 2021, 374, 1632–1640.
  9. Chao, A.; Chiu, C.H. Species Richness: Estimation and Comparison. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 1–26.
  10. Kazimierska, K.; Biel, W. Comparative Analysis of Spray-Dried Porcine Plasma and Hydrolyzed Porcine Protein as Animal-Blood-Derived Protein Ingredients for Pet Nutrition. Molecules 2023, 28, 23.
  11. Vanhove, B.; Duvaux, O.; Rousse, J.; et al. High Neutralizing Potency of Swine Glyco-Humanized Polyclonal Antibodies Against SARS-CoV-2. Eur. J. Immunol. 2021, 51, 1412–1422.
  12. Vallejos-Vidal, E.; Reyes-Cerpa, S.; Tort, L.; et al. Spray-Dried Porcine Plasma Promotes the Association Between Metabolic and Immunological Processes at Transcriptional Level in Gilthead Sea Bream (Sparus aurata) Gut. Front. Immunol. 2022, 9, 814233.
  13. Lone, N.A.; Spackman, E.; Kapczynski, D. Immunologic Evaluation of 10 Different Adjuvants for Use in Vaccines for Chickens Against Highly Pathogenic Avian Influenza Virus. Vaccine 2017, 35, 3401–3408.
  14. Moher, D.; Liberati, A.; Tetzlaff, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097.
  15. Stroup, D.F.; Berlin, J.A.; Morton, S.C.; et al. Meta-Analysis of Observational Studies in Epidemiology: A Proposal for Reporting. Meta-Analysis of Observational Studies in Epidemiology (MOOSE) Group. JAMA 2000, 283, 2008–2012.
  16. Cortez, R.V.; Petry, T.; Caravatto, P.; et al. Shifts in Intestinal Microbiota After Duodenal Exclusion Favor Glycemic Control and Weight Loss: A Randomized Controlled Trial. Surg. Obes. Relat. Dis. 2018, 14, 1748–1754.
  17. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; et al. The Cochrane Collaboration's Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928.
  18. Wan, X.; Wang, W.; Liu, J.; et al. Estimating the Sample Mean and Standard Deviation From the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135.
  19. Zhe, L.; Yang, L.; Lin, S.; et al. Differential Responses of Weaned Piglets to Supplemental Porcine or Chicken Plasma in Diets Without Inclusion of Antibiotics and Zinc Oxide. Anim. Nutr. 2021, 7, 1173–1181.
  20. Krajmalnik-Brown, R.; Ilhan, Z.E.; Kang, D.W.; et al. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutr. Clin. Pract. 2012, 27, 201–214.
  21. Rowland, I.; Gibson, G.; Heinken, A.; et al. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Eur. J. Nutr. 2018, 57, 1–24.
  22. Che, L.; Hu, L.; Zhou, Q.; et al. Microbial Insight Into Dietary Protein Source Affects Intestinal Function of Pigs With Intrauterine Growth Retardation. Eur. J. Nutr. 2020, 59, 327–344.
  23. D’Inca, R.; Kloareg, M.; Gras-Le Guen, C.; et al. Intrauterine Growth Restriction Modifies the Developmental Pattern of Intestinal Structure, Transcriptomic Profile, and Bacterial Colonization in Neonatal Pigs. J. Nutr. 2010, 140, 925–931.
  24. Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; et al. Obesity Alters Gut Microbial Ecology. Proc. Natl. Acad. Sci. 2005, 102, 11070–11075.
  25. Clarke, S.F.; Murphy, E.F.; Nilaweera, K.; et al. The Gut Microbiota and Its Relationship to Diet and Obesity: New Insights. Gut Microbes 2012, 3, 186–202.
  26. Magne, F.; Gotteland, M.; Gauthier, L.; et al. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 5.
  27. Peace, R.M.; Campbell, J.; Polo, J.; et al. Spray-Dried Porcine Plasma Influences Intestinal Barrier Function, Inflammation, and Diarrhea in Weaned Pigs. J. Nutr. 2011, 141, 1312–1317.
  28. Bolte, L.A.; Lee, K.A.; Björk, J.R.; et al. Association of a Mediterranean Diet With Outcomes for Patients Treated With Immune Checkpoint Blockade for Advanced Melanoma. JAMA Oncol. 2023, 9, 705–709.
  29. Pellegrini, M.; D’Eusebio, C.; Ponzo, V.; et al. Nutritional Interventions for Patients With Melanoma: From Prevention to Therapy—An Update. Nutrients 2021, 13, 11.
  30. Antignani, A.; Fitzgerald, D. Immunotoxins: The Role of the Toxin. Toxins 2013, 5, 1486–1502.
  31. Yamaizumi, M.; Mekada, E.; Uchida, T.; et al. One Molecule of Diphtheria Toxin Fragment A Introduced Into a Cell Can Kill the Cell. Cell 1978, 15, 245–250.
  32. Shilova, O.; Shramova, E.; Proshkina, G.; et al. Natural and Designed Toxins for Precise Therapy: Modern Approaches in Experimental Oncology. Int. J. Mol. Sci. 2021, 22, 4975.
  33. Gunasekaran, M.; Sarvananda, L.; Premarathna, A.D. Enhancing Monoclonal Antibodies With Natural Products: Mechanisms and Applications. Intell. Pharm. 2024, 3, 84–89.
  34. Kreitman, R.; Pastan, I. Antibody Fusion Proteins: Anti-CD22 Recombinant Immunotoxin Moxetumomab Pasudotox. Clin. Cancer Res. 2011, 17, 6398–6405.
  35. Li, M.; Liu, Z.S.; Liu, X.L.; et al. Clinical Targeting Recombinant Immunotoxins for Cancer Therapy. Onco Targets Ther. 2017, 10, 3645–3665.
  36. Cheung, L.S.; Fu, J.; Kumar, P.; et al. Second-Generation IL-2 Receptor-Targeted Diphtheria Fusion Toxin Exhibits Antitumor Activity and Synergy With Anti-PD-1 in Melanoma. Proc. Natl. Acad. Sci. 2019, 116, 3100–3105.
  37. Ng’ang’a, Z.W.; Tous, N.; Hussain, M.; et al. Spray-Dried Porcine Plasma Improves Piglets’ Performance and Modulates Gut Immune-Related Genes in the First Week Post-Weaning. Anim. Biosci. 2025, in press.
  38. Ney, L.M.; Wipplinger, M.; Grossmann, M.; et al. Short Chain Fatty Acids: Key Regulators of the Local and Systemic Immune Response in Inflammatory Diseases and Infections. Open Biol. 2023, 13, 230014.
  39. Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261.
  40. Risberg, K.; Fodstad, O.; Andersson, Y. Immunotoxins: A Promising Treatment Modality for Metastatic Melanoma? Ochsner J. 2010, 10, 193–199.
  41. Bray, F.; Laversanne, M.; Sung, H.; et al. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263.
  42. Khan, S.; Ullah, M.W.; Siddique, R.; et al. Role of Recombinant DNA Technology to Improve Life. Int. J. Genom. 2016, 2016, 2405954.
  43. Mukherjee, A.G.; Wanjari, U.R.; Gopalakrishnan, A.V.; et al. Evolving Strategies and Application of Proteins and Peptide Therapeutics in Cancer Treatment. Biomed. Pharmacother. 2023, 163, 114832.
  44. Descotes, J.; Gouraud, A. Clinical Immunotoxicity of Therapeutic Proteins. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1537–1549.
  45. Majérus, M.A. The Cause of Cancer: The Unifying Theory. Adv. Cancer Biol. Metastasis 2022, 4, 100034.
  46. Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 56.
  47. Bhatwa, A.; Wang, W.; Hassan, Y.I.; et al. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front. Bioeng. Biotechnol. 2021, 9, 630551.
  48. Mazor, R.; Pastan, I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Front. Immunol. 2020, 11, 1261.
  49. Wilson, B.A.; Collier, R.J. Diphtheria Toxin and Pseudomonas aeruginosa Exotoxin A: Active-Site Structure and Enzymic Mechanism. In ADP-Ribosylating Toxins; Aktories, K., Ed.; Springer: Heidelberg, Germany, 1992; pp. 27–41.
  50. di Leandro, L.; Colasante, M.; Pitari, G.; et al. Hosts and Heterologous Expression Strategies of Recombinant Toxins for Therapeutic Purposes. Toxins 2023, 15, 699.
  51. Thorpe, P.E.; Ross, W.C.; Cumber, A.J.; et al. Toxicity of Diphtheria Toxin for Lymphoblastoid Cells Is Increased by Conjugation to Antilymphocytic Globulin. Nature 1978, 271, 752–755.
  52. Mathew, M.; Verma, R.S. Humanized Immunotoxins: A New Generation of Immunotoxins for Targeted Cancer Therapy. Cancer Sci. 2009, 100, 1359–1365.
  53. Liu, L. Pharmacokinetics of Monoclonal Antibodies and Fc-Fusion Proteins. Protein Cell 2018, 9, 15–32.
  54. Joosten, V.; Lokman, C.; Hondel, C.; et al. The Production of Antibody Fragments and Antibody Fusion Proteins by Yeast and Filamentous Fungi. Microb. Cell Fact. 2003, 2, 1.
  55. Ahmad, Z.A.; Yeap, S.K.; Ali, A.M.; et al. scFv Antibody: Principles and Clinical Application. Clin. Dev. Immunol. 2012, 2012, 980250.
  56. Zhu, S.; Liu, Y.; Wang, P.C.; et al. Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. Biomed. Res. Int. 2017, 2017, 7929286.
  57. Pai, L.H.; Pastan, I. Clinical Trials With Pseudomonas Exotoxin Immunotoxins. In Clinical Applications of Immunotoxins; Frankel, A.E., Ed.; Springer: Heidelberg, Germany, 1998; pp. 83–96.
  58. Alewine, C.; Hassan, R.; Pastan, I. Advances in Anticancer Immunotoxin Therapy. Oncologist 2015, 20, 176–185.
  59. Antignani, A.; Ho, E.C.H.; Bilotta, M.T.; et al. Targeting Receptors on Cancer Cells With Protein Toxins. Biomolecules 2020, 10, 1331.
  60. Xie, L.Y.; Piao, H.L.; Fan, M.; et al. Immunotoxin Therapy for Lung Cancer. Chin. Med. J. 2017, 130, 607–612.
  61. Frankel, A.E.; Woo, J.H.; Ahn, C.; et al. Resimmune, an Anti-CD3ε Recombinant Immunotoxin, Induces Durable Remissions in Patients With Cutaneous T-Cell Lymphoma. Haematologica 2015, 100, 794–800.
  62. Chen, Z.; Yong, T.; Wei, Z.; et al. Engineered Probiotic-Based Personalized Cancer Vaccine Potentiates Antitumor Immunity Through Initiating Trained Immunity. Adv. Sci. 2024, 11, e2305081.
  63. Maeng, H.; Terabe, M.; Berzofsky, J.A. Cancer Vaccines: Translation From Mice to Human Clinical Trials. Curr. Opin. Immunol. 2018, 51, 111–122.
  64. Fan, T.; Zhang, M.; Yang, J.; et al. Therapeutic Cancer Vaccines: Advancements, Challenges and Prospects. Signal Transduct. Target. Ther. 2023, 8, 450.
  65. Zhou, M.; Tang, Y.; Xu, W.; et al. Bacteria-Based Immunotherapy for Cancer: A Systematic Review of Preclinical Studies. Front. Immunol. 2023, 14, 1140463.
  66. Bajpai, V.K.; Shukla, S.; Kang, S.M.; et al. Developments of Cyanobacteria for Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies. Mar. Drugs 2018, 16, 196.
  67. Xia, D.; Qiu, W.; Wang, X.; et al. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar. Drugs 2021, 19, 703.

Copyright © UK Scientific Publishing Limited.