Immune Response to Spray-Dried Porcine Plasma-Fed Diet: A Systematic Review and Meta-Analysis of Animal Model

Trends in Immunotherapy

Review Article

Immune Response to Spray-Dried Porcine Plasma-Fed Diet: A Systematic Review and Meta-Analysis of Animal Model

Ertegin, B., Jasim, A. M., Naji, H. A., Abbas, S. S., Abdulghani , I., & Dzhusupov, K. (2025). Immune Response to Spray-Dried Porcine Plasma-Fed Diet: A Systematic Review and Meta-Analysis of Animal Model. Trends in Immunotherapy, 9(4), 245–259. https://doi.org/10.54963/ti.v9i4.1024

Authors

  • Baigashkaev Ertegin

    Medical Faculty, Osh State University, Osh 723500, Kyrgyzstan
  • Abbas Mohemmed Jasim

    Department of Medical Laboratory Analysis, Al Mansour University College, Baghdad 10067, Iraq
  • Hasanain Amer Naji

    Department of Medical Laboratory Analysis, Al-Turath University, Baghdad 10013, Iraq
  • Saif Salah Abbas

    Department of Medical Laboratory Analysis, Al-Rafidain University College, Baghdad 10064, Iraq
  • Intisar Abdulghani

    Department of Medical Laboratory Analysis, Madenat Alelem University College, Baghdad 10006, Iraq
  • Kenesh Dzhusupov

    Public Health Department, International Higher School of Medicine, Bishkek 720054, Kyrgyzstan

Received: 14 February 2025; Revised: 3 March 2025; Accepted: 23 June 2025; Published: 10 December 2025

Spray-dried plasma (SDP), a byproduct of the meatpacking industry, is commonly used in swine diets to enhance growth and optimize feed utilization. Multiple studies have shown that animals' immune responses can be improved by giving them plasma proteins like SDP orally. This study aims to highlight the importance of non-invasive dietary interventions in stimulating immune responses and enhancing immunological characteristics. A comprehensive search was conducted using the indexing databases Scopus, PubMed/Medline, ISI Web of Science, Embase, Cochrane Central, and CINAHL and out of the 541 publications initially searched, only 13 fit the specified criteria. This meta-analysis incorporated seven trials, including a total of 210 animals. The SDP group had significantly lower IL-10 levels (SMD: −1.79, 95% CI: −2.43, −1.15, I2: 60%, p = 0.04) compared to the control group.  The SDP group showed statistically higher TNF-α (SMD: 2.32, 95% CI: 0.74, 3.89, I2: 92%, p = 0.004) than the control group.  Also, the SDP group showed statistically higher IgG (SMD: 0.59, 95% CI: 0.03, 1.15, I2: 54%, p = 0.04) than the control group. SDP alters cytokine secretion, promoting an anti-inflammatory immune profile. The positive impact of SDP in this model suggests that these supplements may help enhance immune responses.

Keywords:

Spray-Dried Porcine Plasma (SDPP) Intestinal Health Animal Model Meta-Analysis Cytokines

References

  1. Kazimierska, K.; Biel, W. Chemical Composition and Functional Properties of Spray-Dried Animal Plasma and Its Contributions to Livestock and Pet Health: A Review. Animals 2023, 13, 15.
  2. Blázquez, E.; Rodríguez, C.; Ródenas, J.; et al. Biosafety Steps in the Manufacturing Process of Spray-Dried Plasma: A Review with Emphasis on the Use of Ultraviolet Irradiation as a Redundant Biosafety Procedure. Porcine Health Manag. 2020, 6, 16.
  3. Moretó, M.; Pérez-Bosque, A. Dietary Plasma Proteins, the Intestinal Immune System, and the Barrier Functions of the Intestinal Mucosa. J. Anim. Sci. 2009, 87, E92–E100.
  4. Zhang, C.; Zhang, M.; Wang, S.; et al. Interactions Between Gut Microbiota, Host Genetics and Diet Relevant to Development of Metabolic Syndromes in Mice. ISME J. 2010, 4, 232–241.
  5. Rothschild, D.; Weissbrod, O.; Barkan, E.; et al. Environment Dominates Over Host Genetics in Shaping Human Gut Microbiota. Nature 2018, 555, 210–215.
  6. Balan, P.; Han, K.S.; Rutherfurd-Markwick, K.; et al. Immunomodulatory Effects of Ovine Serum Immunoglobulin in the Growing Rat. Animal 2010, 4, 1702–1708.
  7. Sugisawa, H.; Itou, T.; Sakai, T. Promoting Effect of Colostrum on the Phagocytic Activity of Bovine Polymorphonuclear Leukocytes In Vitro. Biol. Neonate 2001, 79, 140–144.
  8. Ulfman, L.H.; Leusen, J.H.W.; Savelkoul, H.F.J.; et al. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front. Nutr. 2018, 5, 52.
  9. Wiertsema, S.P.; van Bergenhenegouwen, J.; Garssen, J.; et al. The Interplay Between the Gut Microbiome and the Immune System in the Context of Infectious Diseases Throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients 2021, 13, 3.
  10. Pérez-Bosque, A.; Pelegrí, C.; Vicario, M.; et al. Dietary Plasma Protein Affects the Immune Response of Weaned Rats Challenged With S. aureus Superantigen B. J. Nutr. 2004, 134, 2667–2672.
  11. Pérez-Bosque, A.; Miró, L.; Polo, J.; et al. Dietary Plasma Proteins Modulate the Immune Response of Diffuse Gut-Associated Lymphoid Tissue in Rats Challenged With Staphylococcus aureus Enterotoxin B. J. Nutr. 2008, 138, 533–537.
  12. Bosi, P.; Casini, L.; Finamore, A.; et al. Spray-Dried Plasma Improves Growth Performance and Reduces Inflammatory Status of Weaned Pigs Challenged With Enterotoxigenic Escherichia coli K88. J. Anim. Sci. 2004, 82, 1764–1772.
  13. Maijó, M.; Miró, L.; Polo, J.; et al. Dietary Plasma Proteins Modulate the Adaptive Immune Response in Mice With Acute Lung Inflammation. J. Nutr. 2012, 142, 264–270.
  14. Touchette, K.J.; Carroll, J.A.; Allee, G.L.; et al. Effect of Spray-Dried Plasma and Lipopolysaccharide Exposure on Weaned Pigs: I. Effects on the Immune Axis of Weaned Pigs. J. Anim. Sci. 2002, 80, 494–501.
  15. Campbell, J.; Crenshaw, J.; Miró, L.L.; et al. Plasma Protein Supplements Modulate the Activation of Gut-Associated Immune System Induced by Staphylococcus aureus Enterotoxin B in Rats. Proc. Nutr. Soc. 2008, 67, E61.
  16. Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 17.
  17. Miller, E. Introduction. In Handbook of Small Animal Practice, 5th ed.; Morgan, R.V., Ed.; W.B. Saunders: Saint Louis, MO, USA, 2008; pp. 737–739.
  18. Aronson, S.J.; Junge, N.; Trabelsi, M.; et al. Disease Burden and Management of Crigler-Najjar Syndrome: Report of a World Registry. Liver Int. 2022, 42, 1593–1604.
  19. Morales, F.; Montserrat-de la Paz, S.; Leon, M.J.; et al. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children's Health Status: A Literature Review. Nutrients 2023, 16, 1.
  20. Hormoznejad, R.; Shahi, M.M.; Rahim, F.; et al. Combined Cranberry Supplementation and Weight Loss Diet in Non-Alcoholic Fatty Liver Disease: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Int. J. Food Sci. Nutr. 2020, 71, 991–1000.
  21. Clemente-Suárez, V.J.; Mielgo-Ayuso, J.; Martín-Rodríguez, A.; et al. The Burden of Carbohydrates in Health and Disease. Nutrients 2022, 14, 18.
  22. Islam, M.A.; Khandker, S.S.; Kotyla, P.J.; et al. Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Front. Immunol. 2020, 11, 1477.
  23. Maggini, S.; Wintergerst, E.S.; Beveridge, S.; et al. Selected Vitamins and Trace Elements Support Immune Function by Strengthening Epithelial Barriers and Cellular and Humoral Immune Responses. Br. J. Nutr. 2007, 98, S29–S35.
  24. Martí, I.L.A.A.; Reith, W. Arginine-Dependent Immune Responses. Cell. Mol. Life Sci. 2021, 78, 5303–5324.
  25. Childs, C.E.; Calder, P.C.; Miles, E.A. Diet and Immune Function. Nutrients 2019, 11, 8.
  26. Aziz, T.; Hussain, N.; Hameed, Z.; et al. Elucidating the Role of Diet in Maintaining Gut Health to Reduce the Risk of Obesity, Cardiovascular and Other Age-Related Inflammatory Diseases: Recent Challenges and Future Recommendations. Gut Microbes 2024, 16, 2297864.
  27. Shimizu, M. Modulation of Intestinal Functions by Dietary Substances: An Effective Approach to Health Promotion. J. Tradit. Complement. Med. 2012, 2, 81–83.
  28. Rahim, F.; Toguzbaeva, K.; Qasim, N.H.; et al. Probiotics, Prebiotics, and Synbiotics for Patients With Autism Spectrum Disorder: A Meta-Analysis and Umbrella Review. Front. Nutr. 2023, 10, 1294089.
  29. Abdi-Moghadam, Z.; Darroudi, M.; Mahmoudzadeh, M.; et al. Functional Yogurt, Enriched and Probiotic: A Focus on Human Health. Clin. Nutr. ESPEN 2023, 57, 575–586.
  30. Zivkovic, A.M.; Telis, N.; German, J.B.; et al. Dietary Omega-3 Fatty Acids Aid in the Modulation of Inflammation and Metabolic Health. Calif. Agric. 2011, 65, 106–111.
  31. Zhang, Y.J.; Gan, R.Y.; Li, S.; et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156.
  32. Abdelshafeek, K.A.; El-Shamy, A.M. Review on Glucosinolates: Unveiling Their Potential Applications as Drug Discovery Leads in Extraction, Isolation, Biosynthesis, Biological Activity, and Corrosion Protection. Food Biosci. 2023, 56, 103071.
  33. Niza-Ribeiro, J. Food and Water Security and Safety for an Ever-Expanding Human Population. In One Health; Prata, J.C., Ribeiro, A.I., Rocha-Santos, T., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 155–204.
  34. Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236.
  35. Yurdacan, M.; Papila, B.; Turgut, B.C.; et al. Food Intolerance and Allergy: Do They Have an Etiological Role in Idiopathic Granulomatous Mastitis? J. Clin. Med. 2025, 14, 3.
  36. Moher, D.; Liberati, A.; Tetzlaff, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097.
  37. Stroup, D.F.; Berlin, J.A.; Morton, S.C.; et al. Meta-Analysis of Observational Studies in Epidemiology: A Proposal for Reporting. JAMA 2000, 283, 2008–2012.
  38. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; et al. The Cochrane Collaboration's Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928.
  39. Wan, X.; Wang, W.; Liu, J.; et al. Estimating the Sample Mean and Standard Deviation From the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135.
  40. Zhang, Y.; Zhou, Q.; Liu, S.; et al. Partial Substitution of Whey Protein Concentrate With Spray-Dried Porcine Plasma or Soy Protein Isolate in Milk Replacer Differentially Modulates Ileal Morphology, Nutrient Digestion, Immunity and Intestinal Microbiota of Neonatal Piglets. Animals 2023, 13, 21.
  41. Daneshmand, A.; Sharma, N.K.; Dao, T.H.; et al. Spray-Dried Porcine Plasma Enhances Feed Efficiency, Intestinal Integrity, and Immune Response of Broilers Challenged With Necrotic Enteritis. Poult. Sci. 2023, 102, 102431.
  42. Rosell-Cardona, C.; Amat, C.; Griñán-Ferré, C.; et al. The Neuroprotective Effects of Spray-Dried Porcine Plasma Supplementation Involve the Microbiota-Gut-Brain Axis. Nutrients 2022, 14, 11.
  43. Lee, A.H.; Lin, C.Y.; Do, S.; et al. Dietary Supplementation With Fiber, "Biotics," and Spray-Dried Plasma Affects Apparent Total Tract Macronutrient Digestibility and the Fecal Characteristics, Fecal Microbiota, and Immune Function of Adult Dogs. J. Anim. Sci. 2022, 100, 3.
  44. Zhe, L.; Yang, L.; Lin, S.; et al. Differential Responses of Weaned Piglets to Supplemental Porcine or Chicken Plasma in Diets Without Inclusion of Antibiotics and Zinc Oxide. Anim. Nutr. 2021, 7, 1173–1181.
  45. Crenshaw, J.; Del Río, L.L.; Sanjoaquin, L.; et al. Effect of Spray-Dried Porcine Plasma in Peripartum Sow Feed on Subsequent Litter Size. Porcine Health Manag. 2021, 7, 11.
  46. Che, L.; Hu, L.; Zhou, Q.; et al. Microbial Insight Into Dietary Protein Source Affects Intestinal Function of Pigs With Intrauterine Growth Retardation. Eur. J. Nutr. 2020, 59, 327–344.
  47. Moretó, M.; Miró, L.; Amat, C.; et al. Dietary Supplementation With Spray-Dried Porcine Plasma Has Prebiotic Effects on Gut Microbiota in Mice. Sci. Rep. 2020, 10, 2926.
  48. Júnior, C.D.S.; Martins, C.C.S.; Dias, F.T.F.; et al. The Use of an Alternative Feed Additive, Containing Benzoic Acid, Thymol, Eugenol, and Piperine, Improved Growth Performance, Nutrient and Energy Digestibility, and Gut Health in Weaned Piglets. J. Anim. Sci. 2020, 98, 5.
  49. Tran, H.; Anderson, C.L.; Bundy, J.W.; et al. Effects of Spray-Dried Porcine Plasma on Fecal Microbiota in Nursery Pigs. J. Anim. Sci. 2018, 96, 1017–1031.
  50. Zhang, Y.; Chen, D.W.; Yu, B.; et al. Spray-Dried Chicken Plasma Improves Intestinal Digestive Function and Regulates Intestinal Selected Microflora in Weaning Piglets. J. Anim. Sci. 2015, 93, 2967–2976.
  51. Gisbert, E.; Skalli, A.; Campbell, J.; et al. Spray-Dried Plasma Promotes Growth, Modulates the Activity of Antioxidant Defenses, and Enhances the Immune Status of Gilthead Sea Bream (Sparus aurata) Fingerlings. J. Anim. Sci. 2015, 93, 278–286.
  52. van Dijk, A.J. Spray-Dried Plasma in Diets for Weaned Piglets: Influence on Growth and Underlying Mechanisms. Tijdschr. Diergeneeskd. 2002, 127, 520–523.
  53. Miró, L.; Amat, C.; Rosell-Cardona, C.; et al. Dietary Supplementation With Spray-Dried Porcine Plasma Attenuates Colon Inflammation in a Genetic Mouse Model of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2020, 21, 18.
  54. Garcia-Just, A.; Miró, L.; Pérez-Bosque, A.; et al. Dietary Spray-Dried Porcine Plasma Prevents Cognitive Decline in Senescent Mice and Reduces Neuroinflammation and Oxidative Stress. J. Nutr. 2020, 150, 303–311.
  55. Fakharian, F.; Thirugnanam, S.; Welsh, D.A.; et al. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023, 11, 1849.
  56. Fernández-Alacid, L.; Sanahuja, I.; Madrid, C.; et al. Evaluating the Functional Properties of Spray-Dried Porcine Plasma in Gilthead Seabream (Sparus aurata) Fed Low Fish Meal Diets. Animals 2022, 12, 23.
  57. Peace, R.M.; Campbell, J.; Polo, J.; et al. Spray-Dried Porcine Plasma Influences Intestinal Barrier Function, Inflammation, and Diarrhea in Weaned Pigs. J. Nutr. 2011, 141, 1312–1317.