Impact of Gut Microbiota on Immune System Regulation: A Narrative Review-Scilight

Trends in Immunotherapy

Review

Impact of Gut Microbiota on Immune System Regulation: A Narrative Review

Downloads

Turdubaev Kursanbek Tashbolotovich, Hazim Abdul Rahman Alhiti, Zaid Khaled, Ridha Jawad Kadhim Albasri, Ahmad Sabah, & Azhimamatova Rakhima. (2025). Impact of Gut Microbiota on Immune System Regulation: A Narrative Review. Trends in Immunotherapy, 9(3), 30–46. https://doi.org/10.54963/ti.v9i3.1018

Authors

  • Turdubaev Kursanbek Tashbolotovich

    Medical Faculty, Osh State University, Osh 723500, Kyrgyzstan
  • Hazim Abdul Rahman Alhiti

    Department of Medical Laboratory Analysis, Al Mansour University College, Baghdad 10067, Iraq
  • Zaid Khaled

    Department of Medical Laboratory Analysis, Al‑Turath University, Baghdad 10013, Iraq
  • Ridha Jawad Kadhim Albasri

    Department of Medical Laboratory Analysis, Al‑Rafidain University College, Baghdad 10064, Ira
  • Ahmad Sabah

    Department of Medical Laboratory Analysis, Madenat Alelem University College, Baghdad 10006, Iraq
  • Azhimamatova Rakhima

    International International Medical Faculty, Osh State University, Osh 723500, Kyrgyzstan

Received: 13 February 2025; Revised: 3 March 2025; Accepted: 4 March 2025; Published: 22 July 2025

The microbiota plays an essential role in the regulation of the natural immune system, influencing both innate and adaptive immunological responses. This review extracted information from available observational studies that explore the intricate cooperation between gut microbiota and immune system regulation across various health conditions, including Crohn’s disease, respiratory infections, autoimmune diseases, cancer, metabolic disorders, and infectious diseases. Key findings highlight how dysbiosis, a rotation in the microbiome composition or microbial imbalance, contributes to disease pathogenesis and immune dysregulation, while specific microbial taxa and their metabolites can serve as potential biomarkers and therapeutic targets. By analyzing these studies, the paper aims to provide a comprehensive understanding of the gut microbiota’s impact on immune function and its potential implications for disease prevention and management. In conclusion, this review comprehensively elucidates the complex relationship between gut flora and immune system regulation across various health conditions. The synthesized findings underscore the profound impact of microbiota composition on immune responses, from influencing disease susceptibility and severity to potential therapeutic interventions. Key insights include the identification of microbiota-based biomarkers for predicting treatment outcomes and disease risks, highlighting the potential for personalized medicine approaches. However, the few available observational studies, such as study design variability and the complex nature of microbiota dynamics, necessitate further mechanistic research to validate causal relationships and optimize clinical applications. Moving forward, integrating microbiota-targeted therapies and dietary interventions tailored to individual microbial profiles holds promise for mitigating immune dysregulation and improving overall health outcomes.

Keywords:

Autoimmune; Cytokine; Microbiota; Mucosal immunity

References

  1. ADDIN EN.REFLIST Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; et al. Role of the Normal Gut Microbiota. World J. Gastroenterol. 2015, 21, 8787–8803.
  2. Guinane, C.M.; Cotter, P.D. Role of the Gut Microbiota in Health and Chronic Gastrointestinal Disease: Understanding a Hidden Metabolic Organ. Therap. Adv. Gastroenterol. 2013, 6, 295–308.
  3. Berg, G.; Rybakova, D.; Fischer, D.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103.
  4. Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506.
  5. Marshall, J.S.; Warrington, R.; Watson, W.; et al. An Introduction to Immunology and Immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49.
  6. Wang, R.; Lan, C.; Benlagha, K.; et al. The Interaction of Innate immune and Adaptive Immune System. MedComm 2024, 5, e714.
  7. Ahuja, A. Immune System and Immunodeficiency. In: Encyclopedia of Infant and Early Childhood Development; Haith, M.M., Benson, J.B. Eds.; Academic Press: San Diego, CA, USA, 2008; Volume 1, pp. 137–146.
  8. Wu, H.J.; Wu, E. The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes 2012, 3, 4–14.
  9. Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; et al. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8.
  10. DeGruttola, A.K.; Low, D.; Mizoguchi, A.; et al. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel Dis. 2016, 22, 1137–1150.
  11. Francino, M.P. Early Development of the Gut Microbiota and Immune health. Pathogens 2014, 3, 769–790.
  12. Martin, R.; Nauta, A.J.; Ben Amor, K.; et al. Early Life: Gut Microbiota and Immune Development in Infancy. Benef. Microbes 2010, 1, 367–382.
  13. Jiménez, E.; Marín, M.L.; Martín, R.; et al. Is Meconium from Healthy Newborns Actually Sterile?. Res. Microbiol. 2008, 159, 187–193.
  14. Sankarasubramanian, J.; Ahmad, R.; Avuthu, N.; et al. Gut Microbiota and Metabolic Specificity in Ulcerative Colitis and Crohn’s Disease. Front. Med. (Lausanne) 2020, 7, 606298.
  15. Nash, A.K.; Auchtung, T.A.; Wong, M.C.; et al. The Gut Mycobiome of the Human Microbiome Project Healthy Cohort. Microbiome 2017, 5, 153.
  16. Hou, K.; Wu, Z.X.; Chen, X.Y.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135.
  17. Round, J.L.; Mazmanian, S.K. The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease. Nat. Rev. Immunol. 2009, 9, 313–323.
  18. Hrncir, T.; Stepankova, R.; Kozakova, H.; et al. Gut Microbiota and Lipopolysaccharide Content of the Diet Influence Development of Regulatory T Cells: Studies in Germ-Free Mice. BMC Immunol. 2008, 9, 65.
  19. Giambra, V.; Pagliari, D.; Rio, P.; et al. Gut Microbiota, Inflammatory Bowel Disease, and Cancer: The Role of Guardians of Innate Immunity. Cells 2023, 12(, 2654.
  20. Sanchis-Artero, L.; Martínez-Blanch, J.F.; Manresa-Vera, S.; et al. Evaluation of Changes in Gut Microbiota in Patients with Crohn’s Disease after Anti-Tnfα Treatment: Prospective Multicenter Observational Study. Int. J. Environ. Res. Public Health 2020, 17, 5120.
  21. Zhuang, X.; Tian, Z.; Li, N.; et al. Gut Microbiota Profiles and Microbial-Based Therapies in Post-operative Crohn’s Disease: A Systematic Review. Front. Med. (Lausanne) 2020, 7, 615858.
  22. Horwat, P.; Kopeć, S.; Garczyk, A.; et al. Influence of Enteral Nutrition on Gut Microbiota Composition in Patients with Crohn’s Disease: A Systematic Review. Nutrients 2020, 12, 2083.
  23. Fuentes, S.; den Hartog, G.; Nanlohy, N.M.; et al. Associations of Faecal Microbiota with Influenza-Like Illness in Participants aged 60 Years or Older: An Observational Study. Lancet Healthy Longev. 2021, 2, e13–e23.
  24. Rizzetto, L.; Fava, F.; Tuohy, K.M.; et al. Connecting the Immune System, Systemic Chronic Inflammation and the Gut Microbiome: The Role of Sex. J. Autoimmun. 2018, 92, 12–34.
  25. Mattiuzzi, C.; Lippi, G. Current Cancer Epidemiology. J. Epidemiol. Glob. Health 2019, 9(4), 217–222.
  26. Jahani-Sherafat, S.; Azimirad, M.; Ghasemian-Safaei, H.; et al. The Effect of Intestinal Microbiota Metabolites on HT29 Cell Line Using MTT Method in patients with Colorectal Cancer. Gastroenterol. Hepatol. Bed Bench 2019, 12, S74–S79.
  27. Ge, Y.; Wang, X.; Guo, Y.; et al. Gut Microbiota Influence Tumor Development and Alter Interactions with the Human Immune System. J. Exp. Clin. Cancer Res. 2021, 40, 42.
  28. Zou, S.; Fang, L.; Lee, M.H. Dysbiosis of Gut Microbiota in Promoting the Development of Colorectal Cancer. Gastroenterol. Rep. (Oxf) 2018, 6, 1–12.
  29. de Groot, P.F.; Belzer, C.; Aydin, Ö.; et al. Distinct Fecal and Oral Microbiota Composition in Human Type 1 Diabetes, an Observational Study. PLoS One 2017, 12, e0188475.
  30. Liu, X.; Cheng, Y.W.; Shao, L.; et al. Gut Microbiota Dysbiosis in Chinese Children with Type 1 Diabetes Mellitus: An Observational Study. World J. Gastroenterol. 2021, 27, 2394–2414.
  31. Clemente, J.C.; Manasson, J.; Scher, J.U. The Role of the Gut Microbiome in Systemic Inflammatory Disease. BMJ 2018, 360, j5145.
  32. Yeoh, Y.K.; Zuo, T.; Lui, G.C.; et al. Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021, 70, 698–706.
  33. Geng, S.T.; Zhang, Z.Y.; Wang, Y.X.; et al. Regulation of Gut Microbiota on Immune Reconstitution in Patients With Acquired Immunodeficiency Syndrome. Front. Microbiol. 2020, 11, 594820.
  34. Serrano-Villar, S.; Talavera-Rodríguez, A.; Gosalbes, M.J.; et al. Fecal Microbiota Transplantation in HIV: A Pilot Placebo-Controlled Study. Nat. Commun. 2021, 12, 1139.
  35. Gill, P.A.; Inniss, S.; Kumagai, T.; et al. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front. Immunol. 2022, 13, 866059.
  36. Sarkar, A.; Yoo, J.Y.; Valeria Ozorio Dutra, S.; et al. The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 2021, 10.
  37. Aziz, T.; Hussain, N.; Hameed, Z.; et al. Elucidating the Role of Diet in Maintaining Gut Health to Reduce the Risk of Obesity, Cardiovascular and Other Age-Related Inflammatory Diseases: Recent Challenges and Future Recommendations. Gut Microbes 2024, 16, 2297864.
  38. Ademosun, A.O.; Ajeigbe, O.F.; Ademosun, M.T.; et al. Improving Gut Microbiome through Diet Rich in Dietary Fibre and Polyphenols: The Case for Orange Peels. Hum. Nutr. Metab. 2025, 39, 200295.
  39. Charoenngam, N.; Shirvani, A.; Kalajian, T.A.; et al. The Effect of Various Doses of Oral Vitamin D(3) Supplementation on Gut Microbiota in Healthy Adults: A Randomized, Double-Blinded, Dose-response Study. Anticancer Res. 2020, 40, 551–556.
  40. Leeming, E.R.; Johnson, A.J.; Spector, T.D.; et al. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients 2019, 11, 2862.
  41. Zhang, C.; Zhang, M.; Pang, X.; et al. Structural Resilience of the Gut Microbiota in Adult Mice under High-Fat Dietary Perturbations. ISME J. 2012, 6, 1848–1857.
  42. Hildebrandt, M.A.; Hoffmann, C.; Sherrill-Mix, S.A.; et al. High-Fat Diet Determines the Composition of the Murine gut Microbiome Independently of Obesity. Gastroenterology 2009, 137, 1716–1724.
  43. Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; et al. Diet-Induced Obesity is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 2008, 3, 213–223.
  44. Org, E.; Parks, B.W.; Joo, J.W.; et al. Genetic and Environmental Control of Host-Gut Microbiota Interactions. Genome Res. 2015, 25, 1558–1569.
  45. Stott, N.L.; Marino, J.S. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020, 12, 3650.
  46. Mokkala, K.; Houttu, N.; Cansev, T.; et al. Interactions of Dietary Fat with the Gut Microbiota: Evaluation of Mechanisms and Metabolic Consequences. Clin. Nutr. 2020, 39, 994–1018.
  47. Lu, J.; Liu, R.; Ren, H.; et al. Impact of Omega-3 Fatty Acids on Hypertriglyceridemia, Lipidomics, and Gut Microbiome in Patients with Type 2 Diabetes. Med (New York, NY) 2025, 6, 100496.
  48. Xia, J.; Yin, S.; Yu, J.; et al. Improvement in Glycolipid Metabolism Parameters after Supplementing Fish Oil-Derived Omega-3 Fatty Acids is Associated with Gut Microbiota and Lipid Metabolites in Type 2 Diabetes Mellitus. Nutrients 2024, 16, 3755.
  49. den Besten, G.; van Eunen, K.; Groen, A.K.; et al. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340.
  50. Xiang, M.S.W.; Tan, J.K.; Macia, L. Chapter 11 - Fatty Acids, Gut Bacteria, and Immune Cell Function. In The Molecular Nutrition of Fats; Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 151–164.
  51. Monda, V.; Villano, I.; Messina, A.; et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell. Longev. 2017, 2017, 3831972.
  52. Wegierska, A.E.; Charitos, I.A.; Topi, S.; et al. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. (Auckland, NZ) 2022, 52, 2355–2369.
  53. Quaresma, M.; Mancin, L.; Paoli, A.; et al. The Interplay between Gut Microbiome and Physical Exercise in Athletes. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 428–433.
  54. Marttinen, M.; Ala-Jaakkola, R.; Laitila, A.; et al. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients 2020, 12, 2936.
  55. Ashaolu, J.O.; Sylvain, S.Y.M.; Otuechere, C.A.; et al. Physical Activity, Gut Microbiota and the Nexuses of Metabolic and Psychological Disorders in Children and Adolescents. Discover Public Health 2024, 21, 19.
  56. Barzak, B.; Hankus, K.; Parmar, S.; et al. The Effect of Physical Activity on Gut Microbiota. A Review. Med. J. Cell Biol. 2023, 10, 138–143.
  57. Aya, V.; Jimenez, P.; Muñoz, E.; et al. Effects of Exercise and Physical Activity on Gut Microbiota Composition and Function in Older Adults: A Systematic Review. BMC Geriatr. 2023, 23(1), 364.
  58. Beurel, E. Stress in the Microbiome-Immune Crosstalk. Gut Microbes 2024, 16(1), 2327409.
  59. Spencer, S.P.; Fragiadakis, G.K.; Sonnenburg, J.L. Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity 2019, 51(2), 225–239.