Understanding the Immunopathogenesis of Autoimmune Disorders: A Comprehensive Review-Scilight

Trends in Immunotherapy

Review

Understanding the Immunopathogenesis of Autoimmune Disorders: A Comprehensive Review

Downloads

Ismailov Imetkul, Zainab Sabah Kallow, Asmaa Edrees, Safa Ahmed Akram, Ahmed Sabah, & Abzal Zhumagaliuly. (2025). Understanding the Immunopathogenesis of Autoimmune Disorders: A Comprehensive Review. Trends in Immunotherapy, 9(3), 47–60. https://doi.org/10.54963/ti.v9i3.1007

Authors

  • Ismailov Imetkul

    Department of Medical Laboratory Analysis, Medical Faculty, Osh State University, Osh 723500, Kyrgyzstan
  • Zainab Sabah Kallow

    Department of Medical Laboratory Analysis, Al Mansour University College, Baghdad 10067, Iraq
  • Asmaa Edrees

    Department of Medical Laboratory Analysis, Al‑Turath University, Baghdad 10013, Iraq
  • Safa Ahmed Akram

    Department of Medical Laboratory Analysis, Al‑Rafidain University College, Baghdad 10064, Iraq
  • Ahmed Sabah

    Department of Medical Laboratory Analysis, Madenat Alelem University College, Baghdad 10006, Iraq
  • Abzal Zhumagaliuly

    B. Atchabarov Scientific‑Research Institute of Fundamental and Applied Medicine, Kazakh National Medical University, Almaty 050000, Kazakhstan

Received: 12 February 2025; Revised: 17 February 2025; Accepted: 17 March 2025; Published: 23 July 2025

Autoimmune disorders comprise a broad category of illnesses marked by abnormal immune reactions against self‑antigens, resulting in persistent inflammation and tissue damage. This comprehensive review examines the complex mechanisms underlying the development of autoimmune disease, focusing on immunopathogenesis. We discuss the interplay between genetic predispositions, environmental triggers, and pathogens in the initiation and perpetuation of autoimmunity. Key cytokines and inflammatory pathways are highlighted to illustrate their roles in disease progression. We then explore the distinct pathogenic mechanisms of organ‑speciϐic autoimmune disorders, including autoimmune thyroid diseases, autoimmune hemolytic anemia, neuromyelitis optica, idiopathic inflammatory myopathies, and inflammatory bowel disease, while also reviewing the influence of gut microbiome dysbiosis on immune function. Lastly, we address biomarker identiϐication for early detection, current therapeutic strategies, and emerging treatments that target novel pathways. By integrating ϐindings from diverse studies, this review provides a holistic understanding of the immunological landscape of autoimmune disorders, paving the way for improved diagnostic and therapeutic options

Keywords:

Immunopathogenesis; Autoimmune Diseases; Gene Modulation

References

  1. Neamțu, M.; Bild, V.; Vasincu, A.; et al. Inflammasome Molecular Insights in Autoimmune Diseases. Curr. Issues Mol. Biol. 2024, 46, 3502–3532.
  2. Ramos, P.S.; Shedlock, A.M.; Langefeld, C.D. Genetics of Autoimmune Diseases: Insights from Population Genetics. J. Hum. Genet. 2015, 60, 657–664.
  3. Houeiss, P.; Luce, S.; Boitard, C. Environmental Triggering of Type 1 Diabetes Autoimmunity. Front. Endocrinol. 2022, 13, 933965.
  4. Long, A.; Kleiner, A.; Looney, R.J. Immune Dysregulation. J. Allergy Clin. Immunol. 2023, 151, 70–80.
  5. Frazzei, G.; van Vollenhoven, R.F.; de Jong, B.A.; et al. Preclinical Autoimmune Disease: A Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Front. Immunol. 2022, 13, 899372.
  6. Sundaresan, B.; Shirafkan, F.; Ripperger, K.; et al. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023, 15.
  7. Fuschiotti, P. Current Perspectives on the Immunopathogenesis of Systemic Sclerosis. Immunotargets Ther. 2016, 5, 21–35.
  8. Cusick, M.F.; Libbey, J.E.; Fujinami, R.S. Molecular Mimicry as a Mechanism of Autoimmune Disease. Clin. Rev. Allergy Immunol. 2012, 42, 102–111.
  9. Thomas, O.G.; Rickinson, A.; Palendira, U. Epstein-Barr Virus and Multiple Sclerosis: Moving from Questions of Association to Questions of Mechanism. Clin. Transl. Immunology. 2023, 12, e1451.
  10. Vahabi, M.; Ghazanfari, T.; Sepehrnia S. Molecular Mimicry, Hyperactive Immune System, and SARS-COV-2 are Three Prerequisites of the Autoimmune Disease Triangle Following COVID-19 Infection. Int. Immunopharmacol .2022, 112, 109183.
  11. Olayinka, J.J.T.; Richmond, J.M. Immunopathogenesis of Alopecia Areata. Curr. Res. Immunol. 2021, 2, 7–11.
  12. Timmermans, W.M.; van Laar, J.A.; van Hagen, P.M.; et al. Immunopathogenesis of Granulomas in Chronic Autoinflammatory Diseases. Clin. Transl. Immunology. 2016, 5, 118.
  13. Chen, S.-J.; Lin, G.-J.; Chen, J.-W. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. Int. J. Mol. Sci. 2019, 20, 1332.
  14. Habibi, M.A.; Nezhad Shamohammadi ,F.; Rajaei, T.; et al. Immunopathogenesis of Viral Infections in Neurological Autoimmune Disease. BMC Neurol. 2023, 23, 201.
  15. Wysocki, T.; Olesińska, M.; Paradowska-Gorycka, A. Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis-From Research to Clinical Practice. Cells. 2020, 9, 1127.
  16. Tizaoui, K.; Shin, J.I.; Jeong, G.H.; et al. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina. 2022, 58, 1034.
  17. Moulton, V.R.; Suarez-Fueyo, A.; Meidan, E.; et al. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol. Med. 2017, 23, 615–635.
  18. Šutić Udović, I.; Hlača, N.; Massari, L.P.; et al. Deciphering the Complex Immunopathogenesis of Alopecia Areata. Int. J. Mol. Sci. 2024, 25, 5652.
  19. Thewissen, M.; Somers, V.; Venken, K.; et al. Analyses of immunosenescent markers in patients with autoimmune disease. Clin. Immunol. 2007, 123, 209–218.
  20. Vojdani, A.; Vojdani , E.; Rosenberg, A.Z.; et al. The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. Pathophysiology. 2022, 29, 243–280.
  21. Amedei, A.; Bergman, M.P.; Appelmelk, B.J.; et al. Molecular Mimicry between Helicobacter Pylori Antigens and H+, K+ --Adenosine Triphosphatase in Human Gastric Autoimmunity. J. Exp. Med. 2003, 198, 1147–1156.
  22. Chen, L.; Deng, H.; Cui, H.; Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget. 2018, 9, 7204–7218.
  23. Jang, D.I.; Lee, A.H.; Shin, H.Y.; et al. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719.
  24. Xiao. Nuclear matrix factor hnRNP U/SAF-A exerts a global control of alternative splicing by regulating U2 snRNP maturation. Mol. Cell. 2012 3(45),656–668. https://doi.org/10.1016/j.molcel.2012.01.009.
  25. Hu, X.; Li, J.; Fu, M.; et al. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target. Ther. 2021, 6, 402.
  26. Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of Multiple Sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558.
  27. Dinarello, C.A. Interleukin-1 in the Pathogenesis and Treatment of Inflammatory Diseases. Blood 2011, 117, 3720–3732.
  28. Strober, W.; Fuss, I.J. Proinflammatory Cytokines in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology 2011, 140, 1756–1767.
  29. Tichauer, J.E.; Arellano, G.; Acuña, E.; et al. Interferon-Gamma Ameliorates Experimental Autoimmune Encephalomyelitis by Inducing Homeostatic Adaptation of Microglia. Front. Immunol. 2023, 14, 1191838.
  30. Antonelli, A.; Ferrari, S.M.; Corrado, A.; et al. Autoimmune Thyroid Disorders. Autoimmun. Rev. 2015, 14, 174–180.
  31. Hansen, M.; Cheever, A.; Weber, K.S.; et al. Characterizing the Interplay of Lymphocytes in Graves’ Disease. Int. J. Mol. Sci. 2023, 24, 6835.
  32. Fröhlich, E.; Wahl, R. Thyroid Autoimmunity: Role of Anti-Thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front. Immunol. 2017, 8, 521.
  33. Berentsen, S.; Sundic, T. Red Blood Cell Destruction in Autoimmune Hemolytic Anemia: Role of Complement and Potential New Targets for Therapy. Biomed. Res. Int. 2015, 2015, 363278.
  34. Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage—Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2017, 19.
  35. Rother, R.P.; Bell, L.; Hillmen, P.; et al. The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma Hemoglobin—A Novel Mechanism of Human Disease. JAMA 2005, 293, 1653–1662.
  36. Gámez-Díaz, L.; Grimbacher, B. Immune Checkpoint Deficiencies and Autoimmune Lymphoproliferative Syndromes. Biomed. J. 2021, 44, 400–411.
  37. Michalak, S.S.; Olewicz-Gawlik, A.; Rupa-Matysek, J.; et al. Autoimmune Hemolytic Anemia: Current Knowledge and Perspectives. Immun. Ageing 2020, 17, 38.
  38. Kim, W.; Kim, S.H.; Kim, H.J. New Insights into Neuromyelitis Optica. J. Clin. Neurol. 2011, 7, 115–127.
  39. Levy, M.; Wildemann, B.; Jarius, S.; et al. Chapter Six – Immunopathogenesis of Neuromyelitis Optica. In: Advances in Immunology, Alt, F.W., Ed.; Academic Press: Cambridge, MA, USA, 2014; 121, pp. 213–242.
  40. Jarius, S.; Wildemann, B.; Paul, F. Neuromyelitis Optica: Clinical Features, Immunopathogenesis and Treatment. Clin. Exp. Immunol. 2014, 176, 149–164.
  41. Haq, S.A.; Tournadre, A. Idiopathic Inflammatory Myopathies: From Immunopathogenesis to New Therapeutic Targets. Int. J. Rheum. Dis. 2015, 18, 818–825.
  42. Shih DQ, Targan SR. Immunopathogenesis of inflammatory bowel disease. World J Gastroenterol, 2008 ,14,390–400.
  43. André S, Tough DF, Lacroix-Desmazes S. Surveillance of Antigen-Presenting cells by CD4+ CD25+ Regulatory T Cells in Autoimmunity: Immunopathogenesis and Therapeutic Implications. Am J Pathol, 2009, 174,1575–1587.
  44. Varani S, Landini MP. Cytomegalovirus-induced immunopathology and its clinical consequences. Herpesviridae, 2011, 2,6.
  45. Liu X, Hou Y, Peng J. Advances in immunopathogenesis of adult immune thrombocytopenia. Front Med, 2013, 7,418–424.