Prevention and Treatment of Natural Disasters

Article

Flood Modeling and Emergency Planning for Dam Failure: Projections in Calabria (Italy)

Downloads

Foti, G., Barbaro, G., Catalfamo, D., Siclari, A., & Bencivinni, G. (2024). Flood Modeling and Emergency Planning for Dam Failure: Projections in Calabria (Italy). Prevention and Treatment of Natural Disasters, 3(2). https://doi.org/10.54963/ptnd.v3i2.331

Authors

  • Giandomenico Foti
    DICEAM Department, Mediterranea University of Reggio Calabria, Reggio Calabria 89122, Italy https://orcid.org/0000-0001-8257-0602
  • Giuseppe Barbaro Protection of the territory and the environment Section, Metropolitan City of Reggio Calabria, Reggio Calabria 89125, Italy https://orcid.org/0000-0002-8799-0224
  • Domenica Catalfamo Metropolitan City of Reggio Calabria, Protection of the territory and the environment Section
  • Antonino Siclari Metropolitan City of Reggio Calabria, Protection of the territory and the environment Section
  • Giuseppe Bencivinni Metropolitan City of Reggio Calabria, Protection of the territory and the environment Section

A dam is a hydraulic structure made of natural materials, such as earth, or artificial ones, such as concrete, whose main function is to block a watercourse to create an artificial basin with multiple purposes, irrigation, energy, flow regulation, and protection. These structures allow for the storage of large quantities of water which, in the case of a collapse, can have devastating effects on human lives and territory. Therefore, the regulations prescribe severe safety checks and provide operational guidelines for civil protection activities and emergency plans. Through some case studies in Calabria, a region of Southern Italy, the paper analyzes Italian regulations concerning scenarios where it is necessary to safely empty the reservoir behind the dam following an earthquake and allow the consequent civil protection activities and emergency plans to be defined. Also, this paper describes the coupled hydrological and hydrodynamic modeling carried out using HEC-HMS and HEC-RAS, respectively, to define three thresholds for each dam according to Italian regulations. These thresholds are the maximum flow rate for emptying the dams that are contained in the hydraulic pertinence areas downstream of the dams, the attention flow rate for the discharge of the dam beyond which hydraulic criticalities occur, and the incremental thresholds that identify scenarios with greater hydraulic criticalities.

Keywords:

Dam; Dam Failure; Civil Protection Activities; Emergency Plans; Floodable Areas; Modeling.

References

  1. Chen, J.; Shi, H.; Sivakumar, B.; Peart, M.R. Population, water, food, energy and dams. Renewable Sustainable Energy Rev 2016, 56, 18–28.
  2. Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat Sci 2015, 77, 161–170. DOI: https://doi.org/10.1007/s00027-014-0377-0
  3. Cenderelli, D.A. Floods from natural and artificial dam failures. In Inland Flood Hazards: Human, Riparian and Aquatic Communities; Wohl, E.E. Eds; Cambridge University Press: Cambridge, England, 2000; pp. 73–103. DOI: https://doi.org/10.1017/cbo9780511529412.004
  4. Luino, F.; Tosatti, G.; Bonaria, V. Dam failures in the 20th century: nearly 1000 avoidable victims in Italy alone. J. Environ. Sci. Eng. 2014, 3, 19–31.
  5. Zhang, L.; Peng, M.; Chang, D.; Xu, Y. Dam Failure Mechanisms and Risk Assessment; John Wiley & Sons: pHoboken, New Jersey, USA, 2016; pp. 307–321. DOI: https://doi.org/10.1002/9781118558522.ch12
  6. Bonomelli, R.; Farina, G.; Pilotti, M.; Molinari, D.; Ballio, F. Historical comparison of the damage caused by the propagation of a dam break wave in a pre-alpine valley. J. Hydrol.: Reg. Stud. 2023, 48, 101467. DOI: https://doi.org/10.1016/j.ejrh.2023.101467
  7. Smith, N.A. The failure of the Bouzey dam in 1895. Construction Hystory 1994, 10, 47–65.
  8. Pilotti, M.; Maranzoni, A.; Tomirotti, M.; Valerio, G. 1923 Gleno dam break: Case study and numerical modeling. J. Hydraul. Eng. 2011, 137, 480–492. DOI: https://doi.org/10.1061/(asce)hy.1943-7900.0000327
  9. Begnudelli, L.; Sanders, B.F. Simulation of the St. Francis dam-break flood. J. Eng. Mech. 2007, 133, 1200–1212. DOI: https://doi.org/10.1061/(asce)0733-9399(2007)133:11(1200)
  10. Petaccia, G.; Lai, C.G.; Milazzo, C.; Natale, L. The collapse of the Sella Zerbino gravity dam. Eng. Geol. 2016, 211, 39–49. https://doi.org/10.1016/j.enggeo.2016.06.024
  11. Kostecki, S.; Banasiak, R. The Catastrophe of the Niedów Dam—The Causes of the Dam’s Breach, Its Development, and Consequences. Water 2021, 13, 3254. DOI: https://doi.org/10.3390/w13223254
  12. Vacondio, R.; Mignosa, P.; Pagani, S. 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv. Water Resour. 2013, 59, 146–156. DOI: https://doi.org/10.1016/j.advwatres.2013.06.009
  13. Ferrari, A.; Vacondio, R.; Mignosa, P. High-resolution 2D shallow water modelling of dam failure floods for emergency action plans. J. Hydrol. 2023, 618, 129192. DOI: https://doi.org/10.1016/j.jhydrol.2023.129192
  14. Aureli, F.; Maranzoni, A.; Mignosa, P. A semi-analytical method for predicting the outflow hydrograph due to dam-break in natural valleys. Adv. Water Resour. 2014, 63, 38–44.
  15. Aureli, F.; Maranzoni, A.; Petaccia, G. Review of historical dam-break events and laboratory tests on real topography for the validation of numerical models. Water 2021, 13, 1968. DOI: https://doi.org/10.3390/w13141968
  16. Bharath, A.; Shivapur, A.V.; Hiremath, C.G.; Maddamsetty, R. Dam break analysis using HEC-RAS and HEC-GeoRAS: A case study of Hidkal dam, Karnataka state, India. Environ. Challenges 2021, 5, 100401. DOI: https://doi.org/10.1016/j.envc.2021.100401
  17. Gaagai, A.; Aouissi, H.A.; Krauklis, A.E.; Burlakovs, J.; Athamena, A.; Zekker, I.; Boudoukha, A.; Benaabidate L.; Chenchouni, H. Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. Water 2022, 14, 767. DOI: https://doi.org/10.3390/w14050767
  18. Sarchani, S.; Koutroulis, A.G. Probabilistic dam breach flood modeling: the case of Valsamiotis dam in Crete. Nat. Hazards 2022, 114, 1763–1814. DOI: https://doi.org/10.1007/s11069-022-05446-0
  19. Verma, S.; Sachin; Patra, K.C. Dam Break Flow Simulation Model for Preparing Emergency Action Plans for Bargi Dam Failure. In Hydrological Modeling: Hydraulics, Water Resources and Coastal Engineering; Jha, R., Singh, V.P., Singh, V., Roy, L.B., Thendiyath, R., Eds; Springer International Publishing: New York, USA, 2022; pp. 271–286. DOI: https://doi.org/10.1007/978-3-030-81358-1_21
  20. Eldeeb, H.; Mowafy, M.H.; Salem, M.N.; Ibrahim, A. Flood propagation modeling: Case study the Grand Ethiopian Renaissance dam failure. Alexandria Eng. J. 2023, 71, 227–237. DOI: https://doi.org/10.1016/j.aej.2023.03.054
  21. Escuder-Bueno, I.; Serrano-Lombillo, A.; Fluixa-Sanmartin, J.; Morales-Torres, A. Evaluacion de la seguridad hidrologica de presas mediante modelos de riesgo simplificados. In: Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management; Escuder-Bueno, I., Matheu, E., Altarejos-Garcia L., Castillo-Rodriguez J.T., Eds.; CRC Press: Leiden, Boca Raton, Florida, USA,2012; pp. 335–342.
  22. Wieland, M. Safety aspects of sustainable storage dams and earthquake safety of existing dams. Engineering 2016, 2, 325–331. DOI: https://doi.org/10.1016/j.eng.2016.03.011
  23. Fluixá-Sanmartín, J.; Escuder-Bueno, I.; Morales-Torres, A.; Castillo-Rodríguez, JT. Comprehensive decision-making approach for managing time dependent dam risks. Reliab. Eng. Syst. Saf. 2020, 203, 107100. DOI: https://doi.org/10.1016/j.ress.2020.107100
  24. Zhou, X.; Chen, Z.; Yu, S.; Wang, L.; Deng, G.; Sha, P.; Li, S. Risk analysis and emergency actions for Hongshiyan barrier lake. Nat. Hazards 2015, 79, 1933–1959. DOI: https://doi.org/10.1007/s11069-015-1940-2
  25. Azeez, O.; Elfeki, A.; Kamis, A.S.; Chaabani, A. Dam break analysis and flood disaster simulation in arid urban environment: The Um Al-Khair dam case study, Jeddah, Saudi Arabia. Nat. Hazards 2020, 100, 995–1011. DOI: https://doi.org/10.1007/s11069-019-03836-5
  26. Latrubesse, E.M.; Park, E.; Sieh, K.; Dang, T.; Lin, Y.N.; Yun, S.H. Dam failure and a catastrophic flood in the Mekong basin (Bolaven Plateau), southern Laos, 2018. Geomorphology 2020, 362, 107221.
  27. Sabato, L.; Tropeano, M. Fiumara: a kind of high hazard river. Phys. Chem. Earth, Parts A/B/V]C 2004, 29, 707–715. DOI: https://doi.org/10.1016/j.pce.2004.03.008
  28. Sorriso-Valvo, M.; Terranova, O. The Calabrian fiumara streams. ZfG 2006, 143, 109–125.
  29. Canale, C.; Barbaro, G.; Petrucci, O.; Fiamma, V.; Foti, G.; Barilla, G.C.; Puntorieri, P.; Minniti, F.; Bruzzaniti, L. Analysis of floods and storms: Concurrent conditions. Ital. J. Eng. Geol. Environ. 2020, 23–29. DOI: https://doi.org/10.4408/IJEGE.2020-01.S-03
  30. Canale, C.; Barbaro, G.; Foti, G.; Petrucci, O.; Besio, G.; Barillà, G.C. Bruzzano river mouth damage due to meteorological events. Int. J. River Basin Manage. 2022, 20, 499–515. DOI: https://doi.org/10.1080/15715124.2021.1901725
  31. Fiorini, L.; Zullo, F.; Marucci, A.; Romano, B. Land take and landscape loss: Effect of uncontrolled urbanization in Southern Italy. J. Urban Manage. 2019, 8, 42–56. DOI: https://doi.org/10.1016/j.jum.2018.09.003
  32. Cantasano, N.; Pellicone, G.; Ietto, F. The coastal sustainability standard method: A case study in Calabria (southern Italy). Ocean Coast. Manage. 2020, 183, 104962. DOI: https://doi.org/10.1016/j.ocecoaman.2019.104962.
  33. Bombino, G.; Barbaro, G.; D’Agostino, D.; Denisi, P.; Foti, G.; Labate, A.; Zimbone, S.M. Shoreline change and coastal erosion: The role of check dams. First indications from a case study in Calabria, southern Italy. Catena 2022, 217, 106494. DOI: https://doi.org/10.1016/j.catena.2022.106494
  34. Foti, G.; Barbaro, G.; Barillà, G.C.; Frega, F. Effects of anthropogenic pressures on dune systems—case study: Calabria (Italy). J. Mar. Sci. Eng. 2022, 10(1), article number 10. DOI: https://doi.org/10.3390/jmse10010010
  35. Foti, G.; Bombino, G.; D’Agostino, D.; Barbaro, G. The Effects of Anthropogenic Pressure on Rivers: A Case Study in the Metropolitan City of Reggio Calabria. Remote Sens. 2022, 14, 4781. DOI: https://doi.org/10.3390/rs14194781
  36. Foti, G.; Scarascia Mugnozza, G.; Sicilia, C.L. Flood hazard analysis in the Oliveto River Basin (Southern Italy). Ital. J. Eng. Geol. Environ. 2022, 2, 5–15. DOI: https://doi.org/10.4408/IJEGE.2022-02.O-01
  37. Foti, G.; Barbaro, G.; Barillà, G.C.; Mancuso, P.; Puntorieri, P. Shoreline erosion due to anthropogenic pressure in Calabria (Italy). Eur. J. Remote Sens. 2023, 56, 2140076. DOI: https://doi.org/10.1080/22797254.2022.2140076
  38. Bombino, G.; Barbaro, G.; D'Agostino, D.; Denisi, P.; Foti, G.; Zimbone, S.M. Relationships between torrent check dam systems and shoreline dynamics in semi-arid Mediterranean area: A sub-regional focus in Calabria, Italy. Geomorphology 2024, 458, 109259. DOI: https://doi.org/10.1016/j.geomorph.2024.109259
  39. Official Journal of the Italian Republic. Available online: https://www.gazzettaufficiale.it/eli/id/2014/11/04/14A08499/sg (accessed on 10 June 2024
  40. Giandotti, M. Previsione delle piene e delle magre dei corsi d’acqua. Memorie e studi idrografici. Servizio Idrografico Italiano, Report No 2, 1934. (in Italian).
  41. Kirpich, Z.P. Time of concentration of small agricultural watersheds. Civ. Eng. 1940, 10, 362.
  42. Natural Resources Conservation Service (NRCS). Available online: https://nrcspad.sc.egov.usda.gov/distributioncenter/pdf.aspx?productID=115 (accessed on 10 June 2024) .
  43. Williams, J.R.; Kannan, N.; Wang, X.; Santhi, C.; Arnold, J.G. Evolution of the SCS runoff Curve Number method and its application to continuous runoff simulation. J. Hydrol. Eng. 2012, 17, 1221–1229. DOI: https://doi.org/10.1061/(asce)he.1943-5584.0000529
  44. Chow, V.T. Open-channel hydraulics, 1st ed.; Publisher: McGraw-Hill, New York, USA, 1959; pp. 1–680..
  45. Nakamura, R.; Shimatani, Y. Extreme-flood control operation of dams in Japan. J. Hydrol.: Reg. Stud. 2021, 35, 100821. DOI: https://doi.org/10.1016/j.ejrh.2021.100821
  46. Ma, H.; Fu, X. Real time prediction approach for floods caused by failure of natural dams due to overtopping. Adv. Water Resour. 2012, 35, 10–19. DOI: https://doi.org/10.1016/J.ADVWATRES.2011.08.013.
  47. Pianforini, M.; Dazzi, S.; Pilzer, A.; Vacondio, R. Real-time flood maps forecasting for dam-break scenarios with a transformer-based deep learning model. J. Hydrol. 2024, 635, 131169. DOI: https://doi.org/10.1016/j.jhydrol.2024.131169
  48. Foti, G.; Barbaro, G.; Manti, A.; Foti, P.; La Torre, A.; Geria, P.F.; Puntorieri P.; Tramontana, N. A methodology to evaluate the effects of river sediment withdrawal: The case study of the Amendolea River in southern Italy. Aquat. Ecosyst. Health Manage. 2020, 23, 465–473.