Prevention and Treatment of Natural Disasters

Article

Modelling Past Tsunamis in European Waters

Downloads

Periañez, R., Abril, J. M., & Cortés, C. (2024). Modelling Past Tsunamis in European Waters. Prevention and Treatment of Natural Disasters, 3(1). https://doi.org/10.54963/ptnd.v3i1.281

Authors

A research model to simulate the propagation of tsunamis caused by different mechanisms was developed in this paper. These mechanisms are submarine earthquakes, landslides and collapse of volcano calderas. The model is based upon the non-linear shallow-water hydrodynamic equations with horizontal viscosity and friction with the seabed. It also includes a flooding/drying algorithm. This model was tested by applying it to several past tsunamis and comparisons of results with available data and/or other models. The objective of this paper is to present a summary on the application of the model to historical tsunamis occurred in European waters: Atlantic Ocean, Mediterranean Sea and Caspian Sea. Additionally, two application examples on how the research model can be used to confront different candidate tsunami sources and to discard scenarios of catastrophic floodings initially attributed to tsunamis presented: the Santorini tsunami sequence and the flooding of the Gulf of Tartessos in SW Spain.

Keywords:

numerical mode earthquake landslide volcano calder tsunami European seas

Author Biographies

Raúl Periáñez is a PhD in Physics and senior researcher/lecturer at the School of Agricultural Engineering of the University of Seville. His research interests are numerical modelling of marine processes like tides and tsunami propagation and pollutant transport.
 
José María Abril is a Professor in the Department of Applied Physics in the University of Seville. His research interests are numerical modelling of marine processes like tides and tsunami propagation and pollutant transport, as well as other topics like sediment dating.
 
Carmen Cortés is a PhD in Mathematics and senior researcher/lecturer at the School of Agricultural Engineering of the University of Seville. She has been teaching Mathematics in this degree since 1998. Her research interests are computational geometry and numerical simulation.
 

Highlights

  • A research hydrodynamic model, suitable for tsunami modelling, is described.
  • Applied to past tsunamis caused by earthquakes, submarine landslides and volcano caldera collapses in Europe.
  • Results compared with (limited) available data and/or previous models for historical tsunamis.
  • Other applications of research models are described, as discarding scenarios of catastrophic floods attributed to tsunamis.

References

  1. Dias, F.; Dutykh, D. Dynamics of Tsunami Waves. In Extreme Man-Made and Natural Hazards in Dynamics of Structures; Ibrahimbegovic, A., Kozar, I., Eds.; Springer: Dordrecht, Netherlands, 2007; Volume 4, pp. 201–224.
  2. Marras, S.; Mandli, K.T. Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges. Geosciences 2021, 11, 5.
  3. Allgeyer, S.; Cummins, P. Numerical Tsunami Simulation Including Elastic Loading and Seawater Density Stratification. Geophys. Res. Lett. 2014, 41, 2368–2375.
  4. Dutykh, D.; Poncet, R.; Dias, F. The VOLNA Code for the Numerical Modeling of Tsunami Waves: Generation, Propagation and Inundation. Eur. J. Mechanics-B/Fluids 2011, 30, 598–615.
  5. Scardino, G.; Rizzo, A.; Santis, V.D.; Kyriakoudi, D.; Rovere, A.; Vacchi, M.; Torrisi, S.; Scicchitano, G. Insights on the Origin of Multiple Tsunami Events Affected the Archaeological Site of Ognina (South-Eastern Sicily, Italy). Quatern. Int. 2022, 638, 122–139.
  6. Baptista, M.A.; Miranda, J.M.; Chierici, F.; Zitellini, N. New Study of the 1755 Earthquake Source Based on Multi–Channel Seismic Survey Data and Tsunami Modelling. Nat. Hazard. Earth Syst. Sci. 2003, 3, 333–340.
  7. Ioualalen, M.; Arreaga–Vargas, P.; Pophet, N.; Chlieh, M.; Ilayaraja, K.; Ordoñez, J.; Renteria, W.; Pazmiño, N. Numerical Modelling of the 26th December 2004 Indian Ocean Tsunami for the Southeastern Coast of India. Pure Appl. Geophys. 2010, 167, 1205–1214.
  8. Lobkovsky, L.I.; Mazova, R.K.; Kisel’man, B.A.; Morozova, A.O. Numerical Simulation and Spectral Analysis of the November 15, 2006, Tsunami in the Kurile–Kamchatka Region. Oceanology 2010, 50, 449–458.
  9. Kowalik, Z.; Murty, T.S. Numerical Modelling of Ocean Dynamics; World Scientific: Farrer Road, Singapore, 1993; 479p.
  10. Kampf, J. Ocean Modelling for Beginners: Using Open-Source Software; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; 175p.
  11. Periáñez, R.; Casas-Ruíz, M.; Bolívar, J.P. Tidal Circulation, Sediment and Pollutant Transport in Cádiz Bay (SW Spain): A Modelling Study. Ocean Eng. 2013, 69, 60–69.
  12. Periáñez, R.; Pascual-Granged, A. Modelling Surface Radioactive, Chemical and Oil Spills in the Strait of Gibraltar. Comput. Geosciences 2008, 34, 163–180.
  13. Periáñez, R. Modelling the Environmental Behavior of Pollutants in Algeciras Bay (South Spain). Mar. Pollut. Bull. 2012, 64, 221–232.
  14. Periáñez, R. APERTRACK: A Particle–Tracking Model to Simulate Radionuclide Transport in the Arabian/Persian Gulf. Prog. Nucl. Energy 2021, 142, 103998.
  15. Periáñez, R. A Lagrangian Oil Spill Transport Model for the Red Sea. Ocean Eng. 2020, 217, 107953.
  16. Periáñez, R. Modelling the Transport of Suspended Particulate Matter by the Rhone River Plume (France). Implications for Pollutant Dispersion. Environ. Pollut. 2005, 133, 351–364.
  17. Periáñez, R. Environmental Modelling in the Gulf of Cadiz: Heavy Metal Distributions in Water and Sediments. Sci. Total Environ. 2009, 407, 3392–3406.
  18. Herzfeld, M.; Schmidt, M.; Griffies, S.M.; Liang, Z. Realistic Test Cases for Limited Area Ocean Modelling. Ocean Model. 2011, 37, 1–34.
  19. Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154.
  20. Wells, D.L.; Coppersmith, K.L. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area and Surface Displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002.
  21. Stirling, M.; Goded, T.; Berryman, K.; Litchfield, N. Selection of Earthquake Scaling Relationships for Seismic-Hazard Analysis. Bull. Seismol. Soc. Am. 2013, 103, 2993–3011.
  22. Nomanbhoy, N.; Satake, K. Generation Mechanism of Tsunamis from the 1883 Krakatau Eruption. Geophys. Res. Lett. 1995, 22, 509–512.
  23. Novikova, T.; Papadopoulos, G.A.; McCoy, F.W. Modelling of Tsunami Generated by the Giant Late Bronze Age Eruption of Thera, South Aegean Sea, Greece. Geophys. J. Int. 2011, 186, 665–680.
  24. Tinti, S.; Pagnoni, G.; Zaniboni, F. The landslides and Tsunamis of the 30th of December 2002 in Stromboli Analyzed through Numerical Simulations. Bull. Volcanol. 2006, 68, 462–479.
  25. Cecioni, C.; Bellotti, G. Modeling Tsunamis Generated by Submerged Landslides Using Depth Integrated Equations. Appl. Ocean Res. 2010, 32, 343–350.
  26. Harbitz, C.B. Model Simulations of Tsunamis Generated by the Storegga Slides. Mar. Geol. 1992, 105, 1–21.
  27. Periáñez, R. Modelling the Suspended Matter Dynamics in a Marine Environment Using a Three Dimensional σ–Coordinate Model: Application to the Eastern Irish Sea. Appl. Math. Model. 2002, 26, 583–601.
  28. Abril-Hernández, J.M.; Periáñez, R.; O'Connor, J. E.; Garcia-Castellanos, D. Computational Fluid Dynamics Simulations of the Late Pleistocene Lake Bonneville Flood. J. Hydrol. 2018, 561, 1–15.
  29. Periáñez, R.; Abril, J.M. Computational Fluid Dynamics Simulations of the Zanclean Catastrophic Flood of the Mediterranean (5.33 Ma). Palaeogeogr., Palaeoclimatol., Palaeoecol. 2015, 424, 49–60.
  30. Jackson, J.; Priestley, K.; Allen, M.; Berberian M. Active Tectonics of the South Caspian Basin. Geophys. J. Int. 2002, 148, 214–245.
  31. Alasset, P. J.; Hébert, H.; Maouche, S.; Calbini, V.; Meghraoui, M. The Tsunami Induced by the 2003 Zemmouri Earthquake (MW = 6.9, Algeria): Modeling and Results. Geophys. J. Int. 2006, 166, 213–226.
  32. Matias, L.M.; Cunha, T.; Annunziato, A.; Baptista, M.A.; Carrilho, F. Tsunamigenic Earthquakes in the Gulf of Cadiz: Fault Model and Recurrence. Nat. Hazards Earth Syst. Sci. 2013, 13, 1–13.
  33. Scicchitano, G.; Gambino, S.; Scardino, G.; Barreca, G.; Gross, F.; Mastronuzzi, G.; Monaco, C. The Enigmatic 1693 AD Tsunami in the Eastern Mediterranean Sea: New Insights on the Triggering Mechanisms and Propagation Dynamics. Sci. Rep. 2022, 12, 9573.
  34. Baptista, M.A.; Miranda, P.M.A.; Miranda, J.M.; Mendes Victor, L. Constrains on the Source of the 1755 Lisbon Tsunami Inferred from Numerical Modelling of Historical Data on the Source of the 1755 Lisbon Tsunami. J. Geodyn. 1998, 25, 159–174.
  35. Barkan, R.; ten Brink, U.S.; Lin, J. Far field Tsunami Simulations of the 1755 Lisbon Earthquake: Implications for Tsunami Hazard to US East Coast and the Caribbean. Mar. Geol. 2009, 264, 109–122.
  36. Roger, J.; Hébert, H. The 1856 Djijelli (Algeria) Earthquake and Tsunami: Source Parameters and Implications for Tsunami Hazard in the Balearic Islands. Nat. Hazard. Earth Syst. Sci. 2008, 8, 721–731.
  37. Sahal, A.; Roger, J.; Allgeyer, S.; Lemaire, B.; Hébert, H.; Schindelé, F.; Lavigne, F. The Tsunami Triggered by the 21 May 2003 Boumerdes–Zmmouri (Algeria) Earthquake: Field Investigations on the French Mediterranean Coast and Tsunami Modelling. Nat. Hazard. Earth Syst. Sci. 2009, 9, 1823–1834.
  38. Yolsal, S.; Taymaz, T.; Yalciner, A.C. Understanding Tsunamis, Potential Source Regions and Tsunami–Prone Mechanisms in the Eastern Mediterranean. Geol. Soc. Lond., Spec. Publ. 2007, 291, 201–230.
  39. Lorito, S.; Tiberti, M.M.; Basili, R.; Piatanesi, A.; Valensise, G. Earthquake-Generated Tsunamis in the Mediterranean Sea: Scenarions of Potential Threats to Southern Italy. J. Geophys. Res. 2008, 113.
  40. Yolsal, S.; Taymaz, T. Earthquake Source Parameters Along the Hellenic Subduction Zone and Numerical Simulations of Historical Tsunamis in the Eastern Mediterranean. Tectonophysics 2012, 536–537, 61–100.
  41. Stiros, S.C. The 8.5 Magnitude AD365 Earthquake in Crete: Coastal Uplift, Topography Changes, Archaeological and Historical Signature. Quat. Int. 2010, 216, 54–63.
  42. Hamouda, A.Z. Numerical Computations of 1303 Tsunamigenic Propagation towards Alexandria, Egyptian Coast. J. Afr. Earth Sci. 2006, 44, 37–44.
  43. Salaree, A.; Okal, E.A. Field Survey and Modelling of the Caspian Sea Tsunami of 1990 June 20. Geophys. J. Int. 2015, 201, 621–639.
  44. Ambraseys, N.N. The Krasnovodsk (Turkmenistan) Earthquake of 8 July 1895. J. Earthquake Eng. 1997, 1, 293–317.
  45. Balakina, L.M.; Moskvina, A.G. Seismogenic Zones of the Transcaspian Region: Characteristics of Sources of the Largest Earthquakes II. The Krasnovodsk and Kazandzhik Earthquakes. Phys. Solid Earth 2007, 43, 378–403.
  46. Kondorskaya, N.V.; Shebalin, N.V. New Catalog of Strong Earthquakes in the USRR from Ancient Times Through 1977, Report SE-31; World Data Center A for Solid Earth Geophysics: Boulder, Colorado, 1982; pp. 608.
  47. Ozel, N.M.; Ocal, N.; Cevdet, Y.A.; Dogan, K.; Mustafa, E. 2011. Tsunami Hazard in the Eastern Mediterranean and Its Connected Seas: Towards a Tsunami Warning Center in Turkey. Soil Dyn. Earthq. Eng. 2011, 31, 598–610.
  48. Dominey-Howes, D. A Re–analysis of the Late Bronze Age eruption and Tsunami of Santorini, Greece, and the Implications for the Volcano-tsunami Hazard. J. Volcanol. Geotherm. Res. 2004, 130, 107–132.
  49. Goodman–Tchernov, B.N.; Dey, H.W.; Reinhardt, E.G.; McCoy, F.; Mart, Y. Tsunami Waves Generated by the Santorini Eruption Reached Eastern Mediterranean Shores. Geology 2009, 37, 943–946.
  50. Cita, M.B.; Rimoldi, B. Geological and Geophysical Evidence for the Holocene Tsunami Deposit in the Eastern Mediterranean Deep-sea Record. J. Geodyn. 1997, 24, 293–304.
  51. Shiki, T.; Cita, B. Tsunami–Related Sedimentary Properties of Mediterranean Homogenites as an Example of Deep-Sea Tsunamiite. In: Tsunamites and Implications, 1st ed.; Shiki, E.T., Tsuji, Y., Minoura, K., Yamazaki, T., Eds.; Elsevier: Amsterdam, Netherlands, 2008; pp. 203–215.
  52. Cita, M.B.; Camerlenghi, A.; Rimoldi, B. Deep–Sea Tsunami Deposits in the Eastern Mediterranean: New Evidence and Depositional Models. Sediment. Geol. 1996, 104, 155–173.
  53. Salamon, A.; Rockwell, T.; Ward, S.N.; Guidoboni, E.; Comastri, A. Tsunami Hazard Evaluation of the Eastern Mediterranean: Historical Analysis and Selected Modelling. Bull. Seismol. Soc. Am. 2007, 97, 705–724.
  54. Lario, J.; Zazo, C.; Goy, J.L.; Silva, P.G.; Bardaji, T.; Cabero, A.; Dabrio, C.J. Holocene Palaeotsunami Catalogue of SW Iberia. Quat. Int. 2001, 242, 196–200.
  55. Kühne, R.W. Location and Dating of Atlantis. Antiquity 2004, 78, 300.
  56. Rodríguez-Vidal, J.; Ruiz, F.; Cáceres, L.M.; Abad, M.; González-Regalado, M.L.; Pozo, M.; Carretero, M.I.; Monge Soares, A.M.; Toscano, F.G. Geomarkers of the 218–209 BC Atlantic Tsunami in the Roman Lacus Ligustinus (SW Spain): A Palaeogeographical Approach. Quat. Int. 2011, 242, 201–212.
  57. Periáñez, R.; Abril, J.M.; García-Castellanos, D.; Estrada, F.; Ercilla, G. An Exploratory Modelling Study on Sediment Transport during the Zanclean Flood of the Mediterranean. SN Appl. Sci. 2019, 1, 1–18.
  58. Otake, T.; Chua, C.; Suppasri, A.; Imamura, F. Justification of Possible Casualty-Reduction Countermeasures Based on Global Tsunami Hazard Assessment for Tsunami-Prone Regions over the Past 400 Years. J. Disaster Res. 2020, 15, 490–502.
  59. Okal, E.A.; Synolakis, C.E. Far-field Tsunami Hazard from Mega-Thrust Earthquakes in the Indian Ocean. Geophys. J. Int. 2008, 172, 995–1015.
  60. Wang, Y.; Heidarzadeh, M.; Satake, K.; Mulia, I.E.; Yamada, M. A Tsunami Warning System Based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin. J. Geophys. Res-Sol. Ea. 2020, 125.
  61. Gallardo, J.M.; Parés, C.; Castro, M.J. On a Well-Balanced High-Order Finite Volume Scheme for Shallow Water Equations with Topography and Dry Areas. J. Comput. Phys. 2007, 227, 574–601.
  62. Power, W.; Wang, X.; Lane, E.; Gillibrand, P. A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline. Pure Appl. Geophys. 2013, 170, 1621–1634.
  63. Wang, Y.; Heidarzadeh, M.; Satake, K.; Hu, G. Characteristics of Two Tsunamis Generated by Successive Mw 7.4 and Mw 8.1 Earthquakes in the Kermadec Islands on 4 March 2021. Nat. Hazards Earth Syst. Sci. 2022, 22, 1073–1082.
  64. Lu, W.; Jiang, Y.; Lin, J. Modeling Propagation of 2011 Honshu Tsunami. Eng. Appl. Comput. Fluid Mech. 2013, 7, 507–518.
  65. Kämpf, J. Advanced Ocean Modelling: Using Open-Source Software, 1st ed.; Springer: Heidelberg, Germany, 2010; 181p.
  66. Khakimzyanov, G.; Dutykh, D.; Fedotova, Z. Dispersive Shallow Water Wave Modelling. Part III: Model Derivation on a Globally Spherical Geometry. Commun. Comput. Phys. 2018, 23, 315–360.