Prevention and Treatment of Natural Disasters

Article

Earthquakes Three-Stage Early Warning and Short-Term Prediction

Downloads

Kachakhidze, M., Kachakhidze-Murphy, N., Ramishvili, G., & Khvitia , B. (2024). Earthquakes Three-Stage Early Warning and Short-Term Prediction. Prevention and Treatment of Natural Disasters, 3(1). https://doi.org/10.54963/ptnd.v3i1.236

Authors

  • Manana Kachakhidze
    Natural Hazard Scientific‐Research Center, Georgian Technical University, Tbilisi 0175, Georgia
  • Nino Kachakhidze-Murphy Natural Hazard Scientific‐Research Center, Georgian Technical University, Tbilisi 0175, Georgia https://orcid.org/0000-0002-8228-1154
  • Giorgi Ramishvili 1. School of Natural Sciences and Medicine, Ilia State University, Tbilisi 0162, Georgia; 2. Sun and Solar System Department, Georgian Evgeni Kharadze National Astrophysical Observatory, Tbilisi 0162, Georgia
  • Badri Khvitia Sokhumi Institute of Physics and Technology, Tbilisi 0186, Georgia

Among the anomalous geophysical phenomena observed preceding earthquakes, specific attention has been given to VLF/LF, ULF (very low frequency/low frequency, ultra-low frequency) electromagnetic (EM) emissions, recorded before earthquakes, because of an interesting correlation between them and seismic activity. Numerous scientific papers have been published on this topic, providing convincing evidence of these processes observed using ground-based and satellite ground-based observations during the preparation for the earthquake. These phenomena are detectable both at laboratory and geological scales. The authors of this paper have used an avalanche-like unstable geological model of fault formation and a model of the generation of electromagnetic emissions detected before the earthquakes to prove the prediction capabilities of VLF/LF EM emissions. The first gives a clear imagination of earthquake preparation in all stages in the focal area from the beginning of the micro-cracks appearing to the final formation of fault. Another one, based on electrodynamics, explains the EM emissions origination process and offers a formula that analytically connects the observed frequency of  EM radiation with the linear size of the emitted body (fault). It is worth emphasizing the synthesis and rather harmonious relation of the mentioned models. Based on the above models conducted studies clearly show that the description of a qualitative avalanche-unstable geological model of fault formation using VLF/LF EM radiation data made it possible to quantitatively characterize the full cycle of preparation and occurrence of earthquake process. Namely, in the case of VLF/LF emissions monitoring, the beginning of the “avalanche process” of ruptures is considered the first stage of early warning of an incoming earthquake. The so-called EM emissions “silence” period is assessed as the second stage of early warning. The third early warning or an alarm about an incoming earthquake may be announced immediately at the moment of the first anomaly appearance subsequently the “silence” period. This article offers the method of earthquake three-step early warning and short-term (hourly) prediction.

Keywords:

earthquake electromagnetic emissions precursor

References

  1. Uyeda, S. On Earthquake Prediction in Japan. Proc. Jpn. Acad. 2013, Series B 89, 391–400.
  2. The Report of the Midterm Review of the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030. Available online: https://sendaiframework-mtr.undrr.org/
  3. Kachakhidze, M.; Kachakhidze-Murphy, N.; Kukhianidze, V.; Ramishvili, G.; Khvitia, B. For the Classification of Anomalous Geophysical Fields that Existed Prior to an Earthquake. Prev. Treat. Nat. Disasters 2024, 3, 1–16.
  4. Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dieterich, J. Two Models for Earthquake Forerunners. Pure Appl. Geophys. 1975, 113, 169–181.
  5. Biagi, P.F.; Castellana, L.; Maggipinto, T.; Loiacono, D.; Schiavulli, L.; Ligonzo, T.; Fiore, M.; Suci, E.; Ermini, A. A Pre Seismic Radio Anomaly Revealed in the Area Where the Abruzzo Earthquake (M = 6.3) Occurred on 6 April 2009. Nat. Hazards Earth Syst. Sci. 2009, 9, 1551–1556.
  6. Biagi, P.F.; Righetti, F.; Maggipinto, T.; Schiavulli, L.; Ligonzo, T.; Ermini, A.; Moldovan,I.A.; Moldovan, A.S.; Silva, H.; Gonçalves, B., et al. Anomalies Observed in VLF and LF Radio Signals on the Occasion of the Western Turkey Earthquake (Mw = 5.7) on May 19, 2011. Int. J. Geosci. 2012, 3, 856–865.
  7. Biagi, P. F.; Maggipinto, T.; Righetti, F.; Loiacono, D.; Schiavulli, L.; Ligonzo, T.; Ermini, A.; Moldovan, I. A.; Moldovan, A. S.; Buyuksarac, A.; Silva, H. G.; Bezzeghoud, M.; Contadakis, M. E. The European VLF/LF radio network to search for earthquake precursors: setting up and natural/man-made disturbances. Nat. Hazards Earth Syst. Sci. 2011, 11, 333–341.
  8. Eftaxias, K.; Kapiris, P.; Dologlou, E.; Kopanas, J.; Bogris, N.; Antonopoulos, G.; Peratzakis, A.; Hadjicontis, V. EM Anomalies before the Kozani Earthquake: A Study of Their Behavior Through Laboratory Experiments. Geophys. Res. Lett. 2002, 29, 69-1–69-4.
  9. Eftaxias, K.L.; Athanasopoulou, G.; Balasis, M.; Kalimeri, S.; Nikolopoulos, Y.; Contoyiannis, J.; Kopanas, G.; Antonopoulos, L.; Nomicos, C. Unfolding the Procedure of Characterizing Recorded Ultralow Frequency, kHZ and MHz Electromagnetic Anomalies Prior to the L’Aquila Earthquake as Pre-Seismic Ones—Part 1. Nat. Hazards Earth Syst. Sci. 2009, 9, 1953–1971.
  10. Eftaxias, K.; Balasis, G.; Contoyiannis, Y.; Papadimitriou, C.; Kalimeri, M.; Athanasopoulou, L.; Nikolopoulos, S.; Kopanas, J.; Antonopoulos, G.; Nomicos, C. Unfolding the Procedure of Characterizing Recorded Ultra Low Frequency, kHZ and MHz Electromagnetic Anomalies Prior to the L’Aquila Earthquake as Pre-Seismic Ones—Part 2. Nat. Hazards Earth Syst. Sci. 2010, 10, 275–294.
  11. Eftaxias, K.; Potirakis, S.M.; Chelidze, T. On the Puzzling Feature of the Silence of Precursory Electromagnetic Emissions. Nat. Hazards Earth Syst. Sci. 2013, 13, 2381–2397.
  12. Eftaxias, K.; Potirakis, S.M.; Contoyiannis, Y. 13-Four-Stage Model of Earthquake Generation in Terms of Fracture-Induced Electromagnetic Emissions: A Review. Complex. Seismic Time Ser. Meas. Appl. 2018, 437–502.
  13. Papadopoulos, G.A.; Charalampakis, M.; Fokaefs, A.; Minadakis, G. Strong Foreshock Signal Preceding the L’Aquila (Italy) Earthquake (Mw6.3) of 6 April 2009. Nat. Hazards Earth Syst. Sci. 2010, 10, 19–24.
  14. Potirakis, M.S.; Schekotov, A.; Contoyiannis, Y.; Balasis, G.; Koulouras, G.E.; Melis, N.S.; Adamantia, Zoe.; Boutsi, A.Z.; Hayakawa, M.; Eftaxias, K., et al. On Possible Electromagnetic Precursors to a Significant Earthquake (Mw = 6.3) Occurred in Lesvos (Greece) on 12 June 2017. Entropy 2019, 21, 241.
  15. Stelios, M.; Potirakis; Yiannis Contoyiannis; Konstantinos Eftaxias. Lévy and Gauss Statistics in the Preparation of an Earthquake. Phys. A: Stat. Mechan. Appl. 2019, 528, 121360.
  16. Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, OA. A Statistical Study on the Correlation Between Lower Ionospheric Perturbations as Seen by Subionospheric VLF/LF Propagation and Earthquakes. J. Geophys. Res. Sp. Phys. 2010, 115, A09305.
  17. Kachakhidze, M.; Kachakhidze-Murphy, N.; Khazaradze G.; Khvitia B. An Earthquake Precursor Mobile Network. Earthquake Sci. 2021, 34, 168–176.
  18. Kachakhidze, M.K.; Kachakhidze, N.K.; Kaladze, T.D. A Model of the Generation of Electromagnetic Emissions Detected Prior to Earthquakes. Phys. Chem. Earth., Parts A/B/C 2015, 85–86, 78–81.
  19. Kachakhidze, M.; Kachakhidze-Murphy, N.; Khvitia, B.; Ramishvili, G. Large Earthquake Prediction Methods. Open J. Earthquake Res. 2019, 8, 239–254.
  20. Kachakhidze, M.; Kachakhidze-Murphy, N. VLF/LF Electromagnetic Emissions Predict an Earthquake. Open J. Earthquake Res. 2022, 11, 31–43.
  21. Principles of oscillation theory. Available online: https://rusneb.ru/catalog/000199_000009_007635282/ (accessed on 7 May 2024)
  22. Ulomov, V.I. Seismic hazard of Northern Eurasia. Annals Geophys. 1999, 42, 1023–1038.
  23. Spectral Analysis and Its Applications. Available online: http://ikfia.ysn.ru/wpcontent/uploads/2018/01/DzhenkinsVatts_v1_1971ru.pdf (accessed on 7 May 2024)
  24. Li, Z.; Lei, Y.; Wang, E.; Frid, V.; Li, D.; Liu, X.; Ren, X. Characteristics of Electromagnetic Radiation and the Acoustic Emission Response of Multi-Scale Rock-like Material Failure and Their Application. Foundations 2022, 2, 763–780.
  25. Frid, V. Electromagnetic Radiation Method for Rock and Gas Outburst Forecast. J. Appl. Geophys. 1997, 38, 97–104.
  26. Development of a Method and Measuring Tools for Diagnosing Critical States of Rocks Based on Electromagnetic Emission. Available online: https://www.dissercat.com/content/razrabotka-metoda-i-izmeritelnykh-sredstv-diagnostiki-kriticheskikh-sostoyanii-gornykh-porod (accessed on 7 May 2024)
  27. He, X.; Nie, B.; Chen, W.; Wang, E. Research Progress on Electromagnetic Radiation in Gas-Containing Coal and Rock Fracture and Its Applications. Saf. Sci. 2012, 50, 728–735.
  28. Das, S.; Vladimir, F.; Rabinovitch, A.; Bahat, D.; Kushnir, U. Fracture-Induced Electromagnetic Radiation (FEMR) Predicting the Syrian-Turkey Earthquake (Mw-6.3) on 20.2.2023: An Insight on the Dead Sea Transform Activity. Res. Square. Preprint. 2023, 41.
  29. Das, S.; Mallik, J.; Dhankhar, S.; Suthar, N.; Singh, A.K.; Dutta, V.; Gupta, U.; Kumar, G.; Singh, R. Application of Fracture Induced Electromagnetic Radiation (FEMR) Technique to Detect Landslide‑Prone Slip Planes. Nat. Hazard 2020, 101, 505–535.
  30. Chrysanidis, T. Experimental and Numerical Research on Cracking Characteristics of Medium-Reinforced Prisms Under Variable Uniaxial Degrees of Elongation. Eng. Fail. Anal. 2022, 145, 107014.