Review

For the Classification of Anomalous Geophysical Fields that Existed Prior to an Earthquake

Downloads

Kachakhidze, M., Kachakhidze-Murphy , N. K.-M., Kukhianidze, V., Ramishvili , G., & Khvitia , B. (2024). For the Classification of Anomalous Geophysical Fields that Existed Prior to an Earthquake. Prevention and Treatment of Natural Disasters, 3(1), 1–16. https://doi.org/10.54963/ptnd.v3i1.197

Authors

  • Manana Kachakhidze
    Natural Hazard Scientific‐Research Center, Georgian Technical University, Tbilisi 0175, Georgia
  • Nino Kachakhidze-Murphy Kachakhidze-Murphy Natural Hazard Scientific‐Research Center, Georgian Technical University, Tbilisi 0175, Georgia https://orcid.org/0000-0002-8228-1154
  • Vaso Kukhianidze School of Natural Sciences and Engineering, Ilia State University, Tbilisi 0162, Georgia
  • Giorgi Ramishvili School of Natural Sciences and Engineering, Ilia State University, Tbilisi 0162, Georgia
  • Badri Khvitia Sokhumi Institute of Physics and Technology, Tbilisi 0186, Georgia

The consolidated paper presents work carried out in the sphere of earthquake problems. On the base of theoretical and experimental studies, it is shown earthquake prediction possibility. There are discussed earthquake indicators and triggering exogenous factors in the example of the Caucasus region. Because the earthquake preparation process causes anomalous changes with complex characteristics in various geophysical fields, it is given scientifically proven suggestions for the classification of these fields as earthquake precursors, indicators, and triggering factors. It offers a short-term plan for future work in the earthquake prediction direction.

 

Keywords:

earthquake prediction precursor trigger indicator

References

  1. Geller, R.J. Earthquake prediction: A critical review. Geophys. J. Int. 1997, 131(3), 425–450.
  2. Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics. 2009, 470(3–4), 205–213.
  3. Ouzounov, D.; Liu, J.Y.; Taylor, P.T.; Hattori, K. Geospace Observation of Natural Hazards. Front. Earth Sci. 2022, 10, 836629.
  4. Hough, S. The great quake debate: the crusader, the skeptic, and the rise of modern seismology; University of Washington Press: Washington, US, 2020.
  5. Biagi, P.F.; Magippinto, T.; Schiavulli, L.; Ligonzo, T.; Ermini, A. 2013. The European VLF/LF radio network: current status. Acta Geod. Geophys. 2015, 50, 109–120.
  6. Hernández, E.Z.; Arce, M.F. Atmospheric Pressure Anomalies over Earthquakes Epicenters. Eur. J. Environ. Earth Sci. 2021, 2(4), 21–25.
  7. Smirnov, S. Negative anomalies of the Earth’s electric field as earthquake precursors. Geosciences. 2019, 10(1), 10.
  8. Heaton, T.H. Tidal triggering of earthquakes. Geophys. J. Int. 1975, 43(2), 307–326.
  9. Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dieterich, J.H. Two models for earthquake forerunners. Pure Appl. Geophys. 1975, 113, 169–181.
  10. Eftaxias, K.; Athanasopoulou, L.; Balasis, G.; Kalimeri, M.; Nikolopoulos, S.; Contoyiannis, Y.; Kopanas, J.; Antonopoulos, G.; Nomicos, C. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagetic anomalies prior to the L’Aquila earthquake as pre-seismic ones—Part 1. Nat. Hazards Earth Syst. Sci. 2009, 9(6), 1953–1971.
  11. Eftaxias, K.; Potirakis, S.M.; Chelidze, T. On the puzzling feature of the silence of precursory electromagnetic emissions. Nat. Hazards Earth Syst. Sci. 2013, 13(9), 2381–2397.
  12. Kachakhidze, M.K.; Kachakhidze, N.K.; Kaladze, T.D. A model of the generation of electromagnetic emissions detected prior to earthquakes. Phys. Chem. Earth. 2015, 85–86, 78–81.
  13. Ulomov, V.I. Seismicity and seismic zoning of Northern Eurasia. ANNALI DI GEOFISICA, 1993, XXXVI, 83–92.
  14. Johnston, M.J.S. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surv. Geophys. 1997, 18, 441–476.
  15. Kachakhidze, M.; Kachakhidze-Murphy, N. VLF/LF Electromagnetic Emissions Predict an Earthquake. Open J. Earthq. Res. 2022, 11(2), 31–43.
  16. Nikolaev, A.V. About the possibility of artificial discharge of tectonic stress using seismic and electrical influences. Dual Technologies. 1999, 2, 6–10.
  17. Kachakhidze, M.K.; Kiladze, R.; Kachakhidze, N.; Kukhianidze, V.; Ramishvili, G. Connection of large earthquakes occurring moment with the movement of the Sun and the Moon and with the Earth crust tectonic stress character. Nat. Hazards Earth Syst. Sci. 2010, 10(7), 1629–1633.
  18. Jackson, J. Partitioning of strike‐slip and convergent motion between Eurasia and Arabia in eastern Turkey and the Caucasus. J. Geophys. Res. 1992, 97(B9), 12471–12479.
  19. Zhang, Y.; Huang, Q. Seismicity Changes before Major Earthquakes in Sichuan, China, Revealed by a Combination of the RTL Algorithm and ETAS Model. Seismol. Soc. Am. 2023, 94(2A), 844–851.
  20. Nanjo, K.Z.; Izutsu, J.; Orihara, Y.; Kamogawa, M.; Nagao, T. Changes in seismicity pattern due to the 2016 Kumamoto earthquakes identify a highly stressed area on the Hinagu fault zone. Geophys. Res. Lett. 2019, 46(16), 9489–9496.
  21. Kachakhidze, M.; Kachakhidze, N.; Kiladze, R.; Kukhianidze, V.; Ramishvili, G. Relatively small earthquakes of Javakheti Highland as the precursors of large earthquakes occuring in the Caucasus. Nat. Hazards Earth Syst. Sci. 2003, 3(3/4), 165–170.
  22. Nomokonova, V.P. Geophysics reference book, 2nd ed.; Nedra: Moscow, Russia, 1990; pp. 400. (in Russian).
  23. Frenkel, Y.I. Theory of atmospheric electricity phenomena; GITTL: Moscow, 1949; pp. 1–155. (in Russian).
  24. Kachakhidze, N.; Kachakhidze, M.; Kereselidze, Z.; Ramishvili, G. Specific variations of the atmospheric electric field potential gradient as a possible precursor of Caucasus earthquakes. Nat. Hazards Earth Syst. Sci. 2009, 9(4), 1221–1226.
  25. Alejandro, A.C.B.; Ringler, A.T.; Wilson, D.C.; Anthony, R.E.; Moore, S.V. Towards understanding relationships between atmospheric pressure variations and long-period horizontal seismic data: A case study. Geophys. J. Int. 2020, 223(1), 676–691.
  26. Sytinsky, A.D. Connection of Earth’s Seismicity with Solar activity and Atmospheric Processes; Gidrometeoizdat: Leningrad, Russia, 1987; pp. 99. (in Russian).
  27. West, J.D.; Garnero, E.; Shirzaei, M. Earthquake Weather: Linking Seismicity to Changes in Barometric Pressure, Earth Tides, and Rainfall. In AGU Fall Meeting, San Francisco, US, 14-18 December 2015.
  28. Kachakhidze, M.; Kachakhidze-Murphy, N.; Khvitia, B. Earthquakes and related anomalous electromagnetic radiation. 2023. arXiv preprint arXiv:2303.03652.
  29. Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra‐low‐frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23(3), 241–244.
  30. Varotsos, P.A.; Nicholas, V.; Sarlis, E.; Skordas, S. Phenomena preceding major earthquakes interconnected through a physical model. Ann. Geophys. 2019, 37, 315–324.
  31. Liperovsky, V.A.; Meister, C.V.; Liperovskaya, E.V.; Bogdanov, V.V. On the generation of electric field and infrared radiation in aerosol clouds due to radon emanation in the atmosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2008, 8(5), 1199–1205.
  32. Freund, F.T.; Takeuchi, A.; Lau, B.W. Electric currents streaming out of stressed igneous rocks—A step towards understanding pre-earthquake low frequency EM emissions. Phys. Chem. Earth. 2006, 31(4–9), 389–396.
  33. General physics course. Electricity and magnetics. Available online: https://opac.iliauni.edu.ge/eg/opac/record/11408 (in Geor￾gian) (accessed on 3 January 2024).
  34. Natural regional electric fields. Overview of the scientific-technical information. Available online: https://refdb.ru/look/1629481.html (in Russian) (accessed on 3 January 2024).
  35. Orihara, Y.; Kamogawa, M.; Nagao, T.; Uyeda, S. Preseismic anomalous telluric current signals observed in Kozu-shima Island, Japan. Proc. Natl. Acad. Sci. 2012, 109(47), 19125–19128.
  36. Saradjian, M.R.; Akhoondzadeh, M. Thermal anomalies detection before strong earthquakes (M > 6.0) using interquartile, wavelet and Kalman filter methods. Nat. Hazards Earth Syst. Sci. 2011, 11(4), 1099–1108.
  37. Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.S.; Solovieva, M.; Hobara, Y. Multi-parameter observations of seismogenic phenomena related to the Tokyo earthquake (M = 5.9) on 7 October 2021. Geosciences. 2022, 12(7), 265.
  38. Moroz, Y.F.; Moroz, T.A. Annual variations in the electromagnetic field of the earth and electrical conductivity of the geological environment. Izv., Phys. Solid Earth. 2013, 49, 191–204.
  39. Kachakhidze, M.; Kachakhidze-Murphy, N.; Khazaradze, G.; Khvitia, B. An earthquake precursor mobile network. Earthq. Sci. 2021, 34(2), 168–176.