Article

On the Selection of Wavelet Models in the Simulation of Seismic Accelerograms through Evolutionary Optimization

Downloads

Dalla Chiesa, D., Miguel, L. F. F., & Riera, J. D. (2022). On the Selection of Wavelet Models in the Simulation of Seismic Accelerograms through Evolutionary Optimization. Prevention and Treatment of Natural Disasters, 1(1), 1–21. https://doi.org/10.54963/ptnd.v1i1.19

Authors

  • Daniela Dalla Chiesa UFRGS: Federal University of Rio Grande do Sul
  • Letícia Fleck Fadel Miguel
    UFRGS: Federal University of Rio Grande do Sul http://orcid.org/0000-0001-9165-4306
  • Jorge Daniel Riera UFRGS: Federal University of Rio Grande do Sul
A numerical procedure, based on an evolutionary optimization algorithm, has been proposed by the authors for the simultaneous generation of the three components of the seismic ground acceleration. The methodology allows the determination of a train of seismic waves modeled by three different waveforms, for the generation of ground seismic acceleration components. The parameters of each wave, i.e., amplitude, frequency, duration, arrival time and direction, are determined using an evolutionary optimization algorithm. Although no theoretical justification is known by the authors for the generation, at the seismic source, of specific initial waveforms, both in case of fracture or of sliding with friction, waveform acceleration components that satisfy the condition of zero final velocity should in principle be preferred. The latter is a physical restriction that is automatically satisfied by anti-symmetrical functions, thus eliminating the need to correct the baseline of simulated accelerograms. The error of fit of simulated accelerograms generated by three different waveforms proposed in the literature was herein determined by comparison with actual seismic records. On that basis, estimations of the expected error of the evolutionary optimization algorithm in engineering applications are presented.

Keywords:

Seismic waves Waveforms Error of fit Three components of ground acceleration Backtracking search optimization algorithm

References

  1. Housner, G.W., 1947. Characteristics of strong-motion earthquakes. Bulletin of the Seismological Society of America. 37(1), 19-31. DOI:https://doi.org/10.1785/BSSA0370010019
  2. Bycroft, G.N., 1960. White noise representation of earthquakes. Journal of the Engineering Mechanics Division (ASCE). 86, 1-16. DOI: https://doi.org/10.1061/JMCEA3.0000125
  3. Tajimi, H., 1960. A statistical method of determining the maximum response of a building structure during an earthquake. In: Proceedings of 2th World Conference in Earthquake Engineering, Tokyo, Japan. 1, 781-797.
  4. Kanai, K., 1961. An empirical formula for the spectrum of strong earthquake motions. Bulletin Earthquake Research Institute. (39), 85-95.
  5. Clough, R., Penzien, J., 1993. Dynamics of Structures. McGraw-Hill, Inc.
  6. Shinozuka, M., Sato, Y., 1967. Simulation of nonstationary random process. Journal of Engineering Mechanics (ASCE). 93, 11-40. DOI: https://doi.org/10.1061/JMCEA3.0000822
  7. Iyengar, R.N., Iyengar, K.T.S., 1969. A nonstationary random process model for earthquake acceleration. Bulletin of the Seismological Society of America. 59(3), 1163-1188. DOI: https://doi.org/10.1785/BSSA0590031163
  8. Amin, M., Ang, A.H.S., 1968. Non-stationary stochastic model of earthquake motion. Journal of Engineering Mechanics (ASCE). 94, 559-583. DOI: https://doi.org/10.1061/JMCEA3.0000969
  9. Bruna, R.A., Riera, J.D., 1988. Towards the simultaneous generation of the three components of the seismic acceleration on rock surface. Nuclear Engineering & Design. 110(2), 153-163. DOI: https://doi.org/10.1016/0029-5493(88)90017-9
  10. Dalla Chiesa, D., Miguel, L.F.F., 2019. Methodology for simulation of the three components of seismic acceleration. Bulletin of the Seismological Society of America. 109(6), 2427-2436. DOI: https://doi.org/10.1785/0120190042
  11. Dalla Chiesa, D., Miguel, L.F.F., Riera, J.D., 2021. Simultaneous simulation of the three components of seismic accelerograms at locations around seismological stations. Journal of Seismology. 25, 1361-1384. DOI: https://doi.org/10.1007/s10950-021-10050-z
  12. Iturrioz, I., Riera, J.D., 2021. Assessment of the Lattice Discrete Element Method in the simulation of wave propagation in inhomogeneous linearly elastic geologic materials. Soil Dynamics and Earthquake Engineering. 151, 106952. DOI: https://doi.org/10.1016/j.soildyn.2021.106952
  13. Spanos, P.D., Giaralis, A., Politis, N.P., 2007. Numerical Treatment of Seismic accelerograms and of Inelastic Seismic Structural Responses Using Harmonic Wavelets. Computer-Aided Civil and Infrastructure Engineering. 22, 254-264. DOI: https://doi.org/10.1111/j.1467-8667.2007.00483.x
  14. Newland, D.E., 1994a. Wavelet analysis of vibration, Part I: Theory. Journal of Vibrations and Acoustics. 116(4), 409-416. DOI: https://doi.org/10.1115/1.2930443
  15. Newland, D.E., 1994b. Wavelet analysis of vibration, Part II: Wavelet maps. Journal of Vibrations and Acoustics. 116(4), 417-425. DOI: https://doi.org/10.1115/1.2930444
  16. Newland, D.E., 1999. Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets. Journal of Vibrations and Acoustics. 121(2), 149-155. DOI: https://doi.org/10.1115/1.2893957
  17. Gurley, K., Kareem, A., 1999. Applications of wavelet transforms in earthquake, wind and ocean engineering. Engineering Structures. 21, 149-167. DOI: https://doi.org/10.1016/S0141-0296(97)00139-9
  18. Montejo, L.A., Suárez, L.E., 2006. Wavelet-based identification of site frequencies from earthquake records. Journal of Earthquake Engineering. 10(4), 565-594. DOI: https://doi.org/10.1080/13632460609350610
  19. Amiri, G.G., Shahjouei, A., Saadat, S., et al., 2011. Hybrid Evolutionary-Neural Network Approach in Generation of Artificial Accelerograms Using Principal Component Analysis and Wavelet-Packet Transform. Journal of Earthquake Engineering. 15(1), 50-76. DOI: https://doi.org/10.1080/13632469.2010.517281
  20. Yamamoto, Y., Baker, J.W., 2013. Stochastic Model for Earthquake Ground Motion Using Wavelet Packets. Bulletin of the Seismological Society of America. 103(6), 3044-3056. DOI: https://doi.org/10.1785/0120120312
  21. Domingues, M.O., Mendes, O., Kaibara, M.K., et al., 2016. Explorando a transformada wavelet contínua. Revista Brasileira de Ensino de Física. 38. DOI: https://doi.org/10.1590/1806-9126-RBEF2016-0019
  22. Civicioglu, P., 2013. Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation. 219(15), 8121-8144. DOI: https://doi.org/10.1016/j.amc.2013.02.017
  23. Miguel, L.F.F., Miguel, L.F.F., Lopez, R.H., 2016a. Simultaneous optimization of force and placement of friction dampers under seismic loading. Engineering Optimization. 48(4), 582-602. DOI: https://doi.org/10.1080/0305215X.2015.1025774
  24. Miguel, L.F.F., Miguel, L.F.F., Lopez, R.H., 2016b. Failure probability minimization of buildings through passive friction dampers. Structural Design of Tall and Spectral Buildings. 25(17), 869-885. DOI: https://doi.org/10.1002/tal.1287
  25. Kennett, B.L.N., Engdahl, E.R., 1991. Travel times for global earthquake location and phase association.Geophysical Journal International. 105, 429-465. http://ds.iris.edu/spud/earthmodel/10131355.
  26. Bollettino Sismico Italiano - Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti. http://bollettinosismico.rm.ingv.it/.
  27. Castello, B., Selvaggi, G., Chiarabba, C., et al., 2006. CSI Catalogo della sismicità italiana 1981-2002, versione 1.1. INGV-CNT, Roma. http://www.ingv.it/ CSI/.
  28. ESM - Engineering Strong-Motion database. (accessed April 2021). https://esm.mi.ingv.it
  29. Luzi, L., Lanzano, G., Felicetta, C., et al., 2020. Engineering Strong Motion Database (ESM) (Version 2.0). Istituto Nazionale di Geofisica e Vulcanologia (INGV).DOI: https://doi.org/10.13127/ESM.2
  30. Trifunac, M.D., Brady, A.G., 1975. A Study of the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America. 65(3), 581-626. DOI: https://doi.org/10.1785/BSSA0650030581