Journal of Intelligent Communication

Review

The Role of Artificial Intelligence in Advanced Engineering: Current Trends and Future Prospects

Downloads

Palazzo, S., Palazzo, F., & Zambetta, G. (2025). The Role of Artificial Intelligence in Advanced Engineering: Current Trends and Future Prospects. Journal of Intelligent Communication, 4(1), 1–30. https://doi.org/10.54963/jic.v4i1.959

Authors

  • Stefano Palazzo
    “M Albanesi” Allergy and Immunology Unit, Bari, 70126, Italy; The Allergist, Bari, 70126, Italy; Department of Engineering and Science, Universitas Mercatorum, Rome 00186, Italy https://orcid.org/0009-0000-7274-5800
  • Federica Palazzo Department of Human and Social Sciences, Universitas Mercatorum, Rome, 00186, Italy
  • Giovanni Zambetta Forensic Medicine, "F. Miulli" General Regional Hospital, Acquaviva delle Fonti (BA) 70021, Italy

Artificial Intelligence (AI) is increasingly transforming various engineering disciplines, playing a pivotal role in design, manufacturing, maintenance, and optimization. This paper provides a comprehensive analysis of AI applications in advanced engineering, examining key trends, challenges, and future directions. The study systematically categorizes AI methodologies across different fields, including mechanical, civil, electrical, aerospace, and environmental engineering, as well as emerging areas such as biomedical engineering and material science. Through an extensive literature review and case study analysis, this work highlights the impact of AI-driven optimization in mechanical engineering, predictive maintenance in industrial applications, automation in manufacturing, and AI-enhanced smart infrastructure development.Methodologically, this research synthesizes findings from major scientific databases, including IEEE Xplore, PubMed, Scopus, and Web of Science, ensuring a robust and interdisciplinary perspective. The analysis identifies critical challenges in AI adoption, such as data privacy, scalability, and system integration, and explores strategies to address them. Furthermore, this paper discusses the ethical and societal implications of AI in engineering, emphasizing the need for transparent, explainable, and unbiased AI models.The findings suggest that AI has significantly improved engineering efficiency and innovation but also underline the necessity for interdisciplinary collaboration and standardized frameworks to maximize AI’s transformative potential. The study concludes by outlining future prospects, including the integration of AI with the Internet of Things (IoT) and blockchain, the evolution of AI-driven materials discovery, and the role of AI in personalized medicine and next-generation engineering solutions. Addressing these challenges and leveraging AI’s capabilities will be instrumental in shaping the future of engineering.

Keywords:

Artificial Intelligence; Advanced Engineering; Machine Learning; Neural Networks; Optimization; Design; Manufacturing; Maintenance

References

  1. Reinforcement Cao, Y.; Sheng, Q.Z.; McAuley, J.; et al. Reinforcement Learning for Generative AI: A Survey. arXiv 2023, arXiv:2308.14328. DOI: https://doi.org/10.48550/arXiv.2308.14328
  2. Mahmud, M.; Kaiser, M.S.; Hussain, A.; et al. Applications of Deep Learning and Reinforcement Learning to Biological Data. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 2063–2079. DOI: https://doi.org/10.1109/TNNLS.2018.2790388
  3. Mahato, N.R. Will Artificial Intelligence become alternative to Software Engineers? - A Futuristic Approach. Rev. Rev. Index J. Multidiscip. 2022, 2, 28–33. DOI: https://doi.org/10.31305/rrijm2022.v02.n03.005
  4. Vital Simões, R.; Coutinho Parreiras, M.V.; Correa da Silva, A.C.; et al. Artificial Intelligence and Digital Transformation: Analyzing Future Trends. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022. DOI: https://doi.org/10.1109/SMC53654.2022.9945429
  5. Nti, I.K.; Adekoya, A.F.; Weyori, B.; et al. Applications of artificial intelligence in engineering and manufacturing: A systematic review. J. Intell. Manuf. 2021, 33, 1581–1601. DOI: https://doi.org/10.1007/s10845-021-01771-6
  6. Lv, Z.; Xie, S. Artificial intelligence in the digital twins: State of the art, challenges, and future research topics. Dig. Twin 2021, 1, 12. DOI: https://doi.org/10.12688/digitaltwin.17524.1
  7. Razvi, S.; Kumar, K.; Sehgal, A.; et al. AI-Driven Optimization in Mechanical Engineering: Error Identification and System Enhancement. In Revolutionizing the Future Trends in Mechanical Engineering. SCIENTIFIC RESEARCH REPORTS: London, UK. 2024; pp. 67–76.
  8. Rosero, R.H.L.; Silva, C.; Ribeiro, B. Remaining Useful Life Estimation in Aircraft Components with Federated Learning. PHM Soc. Eur. Conf. 2020, 5, 9. DOI: https://doi.org/10.36001/PHME.2020.V5I1.1228
  9. von Wahl, L.; Heidenreich, N.; Mitra, P.; et al. Data Disparity and Temporal Unavailability Aware Asynchronous Federated Learning for Predictive Maintenance on Transportation Fleets. Proc. AAAI Conf. Artif. Intell. 2024, 38, 15420–15428. DOI: https://doi.org/10.1609/aaai.v38i14.29467
  10. Gowekar, G.S. Artificial intelligence for predictive maintenance in oil and gas operations. World J. Adv. Res. Rev. 2024, 23, 1228–1233. DOI: https://doi.org/10.30574/wjarr.2024.23.3.2721
  11. Chen, Z.; Gao, Y.; Liang, J. LOPdM: A Low-Power On-Device Predictive Maintenance System Based on Self-Powered Sensing and TinyML. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. DOI: https://doi.org/10.1109/TIM.2023.3308251
  12. Ucar, A.; Karakose, M.; Kırımça, N. Artificial Intelligence for Predictive Maintenance Applications: Key Components, Trustworthiness, and Future Trends. Appl. Sci. 2024, 14, 898. DOI: https://doi.org/10.3390/app14020898
  13. Sani, A.R.; Zolfagharian, A.; Kouzani, A.Z. Artificial Intelligence-Augmented Additive Manufacturing: Insights on Closed-Loop 3D Printing. Adv. Intell. Syst. 2024, 6, 2400102. https://doi.org/10.1002/aisy.202400102
  14. Englund, C.; Erdal Aksoy, E.; Alonso-Fernandez, F.; et al. AI perspectives in Smart Cities and Communities to enable road vehicle automation and smart traffic control. Smart Cities 2021, 4, 783-802. DOI: https://doi.org/10.3390/smartcities4020040
  15. Choi, W.; Na, S.; Heo, S. Integrating Drone Imagery and AI for Improved Construction Site Management through Building Information Modeling. Buildings 2024, 14, 1106. DOI: https://doi.org/10.3390/buildings14041106
  16. Aloupogianni, E.; Doctor, F.; Karyotis, C.; et al. An AI-Based Digital Twin Framework for Intelligent Traffic Management in Singapore. In Proceedings of the 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), Sydney, Australia, 25–27 July 2024. DOI: https://doi.org/10.1109/ICECET61485.2024.10698642
  17. Shi, T.; Yang, A.; Jin, Y.; et al. Artificial intelligence in process systems engineering. In Applications of Artificial Intelligence in Process Systems Engineering; Ren, J., Shen, W., Man, Y., Dong, L., Eds.; Elsevier: New York, NY, USA, 2021; pp. 1–10. DOI: https://doi.org/10.1016/B978-0-12-821092-5.00010-3
  18. Alex, B.; Jignasa, G.; Madhubabu, K.; et al. AI-Driven Smart Irrigation: Enhancing Agricultural Water Efficiency Through Intelligent Valve Regulation in Piped and Micro Irrigation Networks. In Proceedings of the 2024 First International Conference on Pioneering Developments in Computer Science & Digital Technologies (IC2SDT), Delhi, India, 2–4 August 2024. DOI: https://doi.org/10.1109/IC2SDT62152.2024.10696274
  19. Liu, Z.; Zhou, J.; Yang, X.; et al. Research on Water Resource Modeling Based on Machine Learning Technologies. Water 2024, 16, 472. DOI: https://doi.org/10.3390/w16030472
  20. Kethireddy, R.R. Privacy-Preserving AI Techniques for Secure Data Sharing in Healthcare. J. Recent Trends Comput. Sci. Eng. 2020, 8, 41–51. DOI: https://doi.org/10.70589/JRTCSE.2020.2.4
  21. Mondal, T.G.; Chen, G. Artificial intelligence in civil infrastructure health monitoring—Historical perspectives, current trends, and future visions. Front. Built. Environ. 2022, 8. DOI: https://doi.org/10.3389/fbuil.2022.1007886
  22. Ricciardi Celsi, L.; Valli, A. Applied Control and Artificial Intelligence for Energy Management: An Overview of Trends in EV Charging, Cyber-Physical Security and Predictive Maintenance. Energies 2023, 16, 4678. DOI: https://doi.org/10.3390/en16124678
  23. Kumar, M.; Patra, B. Smart Grid Technologies: A Comprehensive Review. Turk. J. Comput. Math. Educ. (TURCOMAT) 2020, 11, 2895–2899. DOI: https://doi.org/10.61841/turcomat.v11i3.14656
  24. Yousef, L.A.; Yousef, H.; Rocha-Meneses, L. Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions. Energies. 2023, 16, 8057. DOI: https://doi.org/10.3390/en16248057
  25. Ali, J.M. AI-driven software engineering. Adv. Eng. Innov. 2023, 3, 17–21. DOI: https://doi.org/10.54254/2977-3903/3/2023030
  26. Raslan, W.; El Sherbiny, Z.A.; Mohamed, M.s.; et al. Smart Vehicle Safety: AI-Driven Driver Assistance and V2X Communications. In Proceedings of the 2024 International Telecommunications Conference (ITC-Egypt), Cairo, Egypt, 22–25 July 2024; pp. 787–792. DOI: https://doi.org/10.1109/ITC-Egypt61547.2024.10620463
  27. Harriss, D.; Sheh, R.; Geappen, K. Autonomous Aerial Drones Connecting Public Safety: Opportunities and Challenges for the Future. In Proceedings of the Autonomous Aerial Drones Connecting Public Safety: Opportunities and Challenges for the Future, San Diego, CA, USA, 22–25 April 2024. DOI: https://doi.org/10.52202/075106-0002
  28. Khaleel, M.; Ahmed, A.; Alsharif, A. Artificial Intelligence in Engineering. Brill. Res. Artif. Intell. 2023, 3, 32–42. DOI: https://doi.org/10.47709/brilliance.v3i1.2170
  29. Li, W. The application of artificial intelligence in aerospace engineering. Appl. Comput. Eng. 2024, 35. 17–25. DOI: https://doi.org/10.54254/2755-2721/35/20230353
  30. Sinha, P.C.; Singh, M. AI and Robotics in Space Exploration: Exploring the Unknown with Intelligent Machines. Int. J. Emerg. Technol. Innov. Res. 2019, 6, 230–241. DOI: https://doi.org/10.1729/Journal.41287
  31. Swan, R.M.; Atha, D.; Leopold, H.A.; et al. AI4MARS: A Dataset for Terrain-Aware Autonomous Driving on Mars. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021. DOI: https://doi.org/10.1109/CVPRW53098.2021.00226
  32. Park, H.; Ono, M. Sequential Deep Learning for Mars Autonomous Navigation. In Proceedings of the 2023 IEEE Space Computing Conference (SCC), Pasadena, CA, USA, 18–21 July 2023. DOI: https://doi.org/10.1109/SCC57168.2023.00011
  33. Deshpande, R.S.; Ambatkar, P.V. Interpretable Deep Learning Models: Enhancing Transparency and Trustworthiness in Explainable AI. Ciênc. Eng. - Sci. Eng. J. 2023, 11, 1352–1363. DOI: https://doi.org/10.52783/cienceng.v11i1.286
  34. Saeed, W.; Omlin, C. Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities. Knowl.-Based Syst. 2021, 263, 110273. DOI: https://doi.org/10.1016/j.knosys.2023.110273
  35. Tedeschini, B.C.; Savazzi, S.; Stoklasa, R.; et al. Decentralized Federated Learning for Healthcare Networks: A Case Study on Tumor Segmentation. IEEE Access 2022, 10, 8693–8708. DOI: https://doi.org/10.1109/ACCESS.2022.3141913
  36. Elayan, H.; Aloqaily, M.; Guizani, M. Sustainability of Healthcare Data Analysis IoT-Based Systems Using Deep Federated Learning. IEEE Internet Things J. 2021, 9, 7338–7346. DOI: https://doi.org/10.1109/JIOT.2021.3103635
  37. Hebecker, M.; Lambrecht, J.; Schmitz, M. Towards Real-World Force-Sensitive Robotic Assembly through Deep Reinforcement Learning in Simulations. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Delft, The Netherlands, 12–16 July 2021. DOI: https://doi.org/10.1109/AIM46487.2021.9517356
  38. Farooq, A.; Iqbal, K. A Survey of Reinforcement Learning for Optimization in Automation. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August–1 September 2024. DOI: https://doi.org/10.1109/CASE59546.2024.10711718
  39. Liu, Q.; Gu, J.; Yang, J.; et al. Cloud, Edge, and Mobile Computing for Smart Cities. In Urban Informatics; Shi, W., Goodchild, M.F., Batty, M., et al., Eds.; Springer: Singapore, 2021; pp. 757–795. DOI: https://doi.org/10.1007/978-981-15-8983-6_41
  40. Peyman, M.; Copado, P.; Tordecilla, R.D.; et al. Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems. Energies 2021, 14, 6309. DOI: https://doi.org/10.3390/en14196309
  41. SAE, 2024. Generative Design in Aerospace and Automotive Structures. SAE Research Report EPR2024016, 23-07-2024. SAE: Detroit, MI, USA. DOI: https://doi.org/10.4271/epr2024016
  42. SAE, 2024. Towards the Design-Driven Carbon Footprint Reduction of Composite Aerospace and Automotive Components: An Overview. SAE Technical Paper Series. SAE Technical Paper 2024-37-0032, 12-06-2024. SAE: Detroit, MI, USA. DOI: https://doi.org/10.4271/2024-37-0032
  43. Maataoui, S.; Bencheikh, G.; Bencheikh, G. Predictive Maintenance in the Industrial Sector: A CRISP-DM Approach for Developing Accurate Machine Failure Prediction Models. In Proceedings of the 2023 Fifth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Zouk Mosbeh, Lebanon, 5–7 July 2023. DOI: https://doi.org/10.1109/ACTEA58025.2023.10193983
  44. Koca, O.; Kaymakci, O.; Mercimek, M. Advanced Predictive Maintenance with Machine Learning Failure Estimation in Industrial Packaging Robots. In Proceedings of the 2020 International Conference on Development and Application Systems (DAS); Suceava, Romania, 21–23 May 2020. DOI: https://doi.org/10.1109/DAS49615.2020.9108913
  45. Ohalete, N.C.; Aderibigbe, A.O.; Ani, E.C.; et al. Advancements in Predictive Maintenance in the Oil and Gas Industry: A Review of AI and Data Science Applications. World J. Adv. Res. Rev. 2023, 20, 167–181. DOI: https://doi.org/10.30574/wjarr.2023.20.3.2432
  46. Latrach, A. Application of Deep Learning for Predictive Maintenance of Oilfield Equipment [Master's Thesis]. 2020. DOI: https://doi.org/10.48550/arXiv.2306.11040
  47. Gadaleta, M.; Pellicciari, M.; Berselli, G. Optimization of the Energy Consumption of Industrial Robots for Automatic Code Generation. Robot. Comput. Integr. Manuf. 2019, 57, 452–464. DOI: https://doi.org/10.1016/J.RCIM.2018.12.020
  48. Carabin, G.; Wehrle, E.; Vidoni, R. A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems. Robotics 2017, 6, 39. DOI: https://doi.org/10.3390/robotics6040039
  49. Nurhaeni, H.; Delhi, A.; Daeli, O.P.M.; et al. Optimizing Electrical Energy Use through AI: An Integrated Approach for Efficiency and Sustainability. IEEE Trans. Artif. Intell. 2024, 2, 106–113. DOI: https://doi.org/10.33050/italic.v2i2.533
  50. Mishra, S. Artificial Intelligence versus Food Processing and Manufacturing Sector: An Editorial. Open Access J. Data Sci. Artif. Intell. 2024, 2, 1–4. DOI: https://doi.org/10.23880/oajda-16000134
  51. Jadhav, N.R.; Bhutada, S.; Sagavkar, S.R.; et al. AI-Driven Pharmaceutical Manufacturing: Revolutionizing Quality Control and Process Optimization. J. Stat. Manag. Syst. 2024, 27, 405–416. DOI: https://doi.org/10.47974/jsms-1265
  52. Muniandi, B.; Maurya, P.K.; Bhavani, C.H.; et al. AI-Driven Energy Management Systems for Smart Buildings. Power Syst. Technol. 2024, 48, 322–337. DOI: https://doi.org/10.52783/pst.280
  53. Merabet, G.H.; Essaaidi, M.; Haddou, M.; et al. Intelligent Building Control Systems for Thermal Comfort and Energy-Efficiency: A Systematic Review of Artificial Intelligence-Assisted Techniques. Renew. Sustain. Energy Rev. 2021, 144, 110969. DOI: https://doi.org/10.1016/J.RSER.2021.110969
  54. Santhiya, P.; Jebadurai, I.; Paulraj, G.; et al. ITS-AI Integration: Enhanced Strategies for Mitigating Urban Traffic Congestion. In Proceedings of the 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), Jamshedpur, India, 9–10 April 2024. DOI: https://doi.org/10.1109/ICRTCST61793.2024.10578453
  55. Ogundipe, O.B.; Okwandu, A.C.; Abdulwaheed, S.A. Optimizing Construction Supply Chains Through AI: Streamlining Material Procurement and Logistics for Project Success. GSC Adv. Res. Rev. 2024, 20, 147–158 DOI: https://doi.org/10.30574/gscarr.2024.20.1.0258
  56. Ming, L.W.; Anderson, J.; Hidayat, F.; et al. AI as a Driver of Efficiency in Waste Management and Resource Recovery. Int. Trans. Artif. Intell. 2024, 2, 128–134. DOI: https://doi.org/10.33050/italic.v2i2.547
  57. Hussain, M.; Karthikeyan, N.; Maurya, I.; et al. AI-Optimized Irrigation for Sustainable Agriculture. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 18–19 April 2024. DOI: https://doi.org/10.1109/ADICS58448.2024.10533562
  58. Yue, W.; Chen, L.; Huang, H. Research on Machine Learning Algorithm-Based Approach for Detecting Abnormal Data from Environmental Sensors in Different Dimensions. In Proceedings of the 2023 International Joint Conference on Robotics and Artificial Intelligence, Location of Conference, Country, Date of Conference, Shanghai, China, 7–9 July 2023; pp. 26–33. DOI: https://doi.org/10.1145/3632971.3632990
  59. Mahardhika, S.; Putriani, O. Deployment and Use of Artificial Intelligence (AI) in Water Resources and Water Management. IOP Conf. Ser. Earth Environ. Sci. 2023, 1195, 012056. DOI: https://doi.org/10.1088/1755-1315/1195/1/012056
  60. Krishnan, R.; Ashokkumar, C.; Nithila, E.E.; et al. AI-Powered Demand Response Mechanisms for Sustainable Smart Grids. In Proceedings of the 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 7–9 August 2024. DOI: https://doi.org/10.1109/ICESC60852.2024.10690089
  61. Udo, W.S.; Kwakye, J.M.; Ekechukwu, D.E.; et al. Smart Grid Innovation: Machine Learning for Real-Time Energy Management and Load Balancing. Eng. Sci. Technol. J. 2023, 4, 603–616. DOI: https://doi.org/10.51594/estj.v4i6.1395
  62. Hameed, Z.; Hashemi, S.; Træholt, C. Applications of AI-Based Forecasts in Renewable Based Electricity Balancing Markets. In Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain, 10–12 March 2021. DOI: https://doi.org/10.1109/ICIT46573.2021.9453469
  63. Joshi, A.; Spilbergs, A.; Miķelsone, E. AI-Enabled Drone Autonomous Navigation and Decision Making for Defence Security. Environ. Technol. Resour. 2024, 4, 138–143. DOI: https://doi.org/10.17770/etr2024vol4.8237
  64. Kalidas, A.P.; Joshua, C.J.; Quadir, A.; et al. Deep Reinforcement Learning for Vision-Based Navigation of UAVs in Avoiding Stationary and Mobile Obstacles. Drones 2023, 7, 245. DOI: https://doi.org/10.3390/drones7040245
  65. Zhang, G.; Raina, A.; Cagan, J.; et al. A cautionary tale about the impact of AI on human design teams. Des. Stud. 2021, 72, 100990. DOI: https://doi.org/10.1016/J.DESTUD.2021.100990
  66. Goodall, R.E.A. Accelerating Materials Discovery with Machine Learning [Apollo - University of Cambridge Repository]. 2021. DOI: https://doi.org/10.17863/CAM.82489
  67. Taterao, K.S.; Anant, M.A.; Sanjay, M.G.; et al. Construction of Green Buildings by using AI in the Civil Engineering Field. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 1912–1918. DOI: https://doi.org/10.22214/ijraset.2023.57735
  68. Xu, Y.; Qian, W.; Li, N.; Li, H. Typical advances of artificial intelligence in civil engineering. Adv. Struct. Eng. 2022, 25, 3405–3424. DOI: https://doi.org/10.1177/13694332221127340
  69. Czumbil, L.; Micu, D.; Ceclan, A. Advanced Numerical Methods Based on Artificial Intelligence. In Numerical Methods for Energy Applications; Mahdavi Tabatabaei, N., Bizon, N., Eds.; Springer: Cham, Switzerland, 2021. DOI: https://doi.org/10.1007/978-3-030-62191-9_4
  70. Murthy, N.M. Future Scope of Artificial Intelligence in Software Engineering. Int. J. Sci. Res. 2023, 12, 1401–1402. DOI: https://doi.org/10.21275/sr231113100032
  71. Barenkamp, M.; Rebstadt, J.; Thomas, O. Applications of AI in classical software engineering. AI Perspect. Adv. 2020, 2, 1–15. DOI: https://doi.org/10.1186/s42467-020-00005-4
  72. Kadkhodayi, A., Jabeli, M., Aghdam, H.; et al. Artificial Intelligence-Based Real-Time Traffic Management. J. Electr. Electron. Eng. 2023, 2, 368–373.
  73. Mahmoud, A.; Abdelhady, K.; Salama, M. New Algorithm for Vehicle-to-Vehicle Advanced Driver-Assistance Systems (V2V-ADAS) to Prevent Collisions. Int. Uni-Sci. Res. J. 2022, 3, 133–138. DOI: https://doi.org/10.59271/s44915.022.1225.20
  74. Noviati, N.; Putra, F.; Sadan, S.; et al. Artificial Intelligence in Autonomous Vehicles: Current Innovations and Future Trends. Int. J. Cyber IT Service Manag. 2024, 4, 97–104. DOI: https://doi.org/10.34306/ijcitsm.v4i2.161
  75. Thon, C., Finke, B., Kwade, A.; et al. Artificial Intelligence in Process Engineering. Adv. Intell. Syst. 2021, 3, 2000261. DOI: https://doi.org/10.1002/aisy.202000261
  76. Wang, J.; Hu, J.; Mills, J.; et al. Federated Ensemble Model-Based Reinforcement Learning in Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2021, 34, 1848–1859. DOI: https://doi.org/10.1109/TPDS.2023.3264480
  77. Wang, C.; Yao, T.; Fan, T.; et al. Modeling on Resource Allocation for Age-Sensitive Mobile-Edge Computing Using Federated Multiagent Reinforcement Learning. IEEE Internet Things J. 2024, 11, 3121–3131. DOI: https://doi.org/10.1109/JIOT.2023.3294535
  78. Combining Federated Learning and Control: A Survey. Available from: https://arxiv.org/abs/2407.11069 (cited 28 February 2025).
  79. Keremer, O., Malay, F.C., Deveci, B., et al. Optimisation of a Chemical Process by Using Machine Learning Algorithms with Surrogate Modeling. In: Younas, M., Awan, I., Grønli, T.M. (Eds.). Mobile Web and Intelligent Information Systems. MobiWIS 2023. Lecture Notes in Computer Science, vol 13977. Springer: Cham, Switzerland, 2023. DOI: https://doi.org/10.1007/978-3-031-39764-6_13
  80. Hajjar, Z., Tayyebi, S., EghbalAhmadi, M. Application of AI in Chemical Engineering. Artif. Intell.- Emerg. Trends Appl. 2018. DOI: https://doi.org/10.5772/INTECHOPEN.76027
  81. Human-Centered AI. Available from: https://www.semanticscholar.org/paper/Human-Centered-AI-Barmer-Dzombak/264b9b136889da3b4d7e50ef58c77678b35dc3e0 (cited 5 March 2025)
  82. Baughan, N., Douglas, L., Giger, M.L. Past, Present, and Future of Machine Learning and Artificial Intelligence for Breast Cancer Screening. J. Breast Imaging 2022, 4, 451–459. DOI: https://doi.org/10.1093/jbi/wbac052
  83. Chopra, S.; Emran, T.B. Advances in AI-based prosthetics development: editorial. Int. J. Surg. (Lond, Engl.) 2024, 110, 4538–4542. DOI: https://doi.org/10.1097/JS9.0000000000001573
  84. Wala, H.Z.; Nevagi, T.P.; Jagtap, S. Revolutionizing Healthcare: Early Disease Detection through Retinal Imaging and AI-Driven Approaches. In Proceedings of the 2023 6th International Conference on Advances in Science and Technology (ICAST), Mumbai, India, 8–9 December 2023. DOI: https://doi.org/10.1109/ICAST59062.2023.10455046
  85. Doudican, N.A.; Kumar, A.; Singh, N.K.; et al. Personalization of cancer treatment using predictive simulation. J. Transl. Med. 2015, 13, 43. DOI: https://doi.org/10.1186/s12967-015-0399-y
  86. Yang, X. The applications of artificial intelligence in personalized medicine. Appl. Comput. Eng. 2024. DOI: https://doi.org/10.54254/2755-2721/71/20241625
  87. Ozkaya, I. What Is Really Different in Engineering AI-Enabled Systems? IEEE Softw. 2020, 37, 3–6. DOI: https://doi.org/10.1109/MS.2020.2993662
  88. Anand, A.; Goel, S.; Panesar, G.S. Energy-Efficient Edge Computing Architectures for AI Workloads: A Comparative Analysis in Cloud-Driven Environments. In Proceedings of the 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), Sonipat, India, 25–26 May 2024. DOI: https://doi.org/10.1109/INNOCOMP63224.2024.00106
  89. Talirz, L.; Kumbhar, S.; Passaro, E.; et al. Materials Cloud, a Platform for Open Computational Science. Sci. Data 2020, 7, 229. DOI: https://doi.org/10.1038/s41597-020-00637-5
  90. Bhandari, U.; Chen, Y.; Ding, H.; et al. Machine-Learning-Based Thermal Conductivity Prediction for Additively Manufactured Alloys. J. Manuf. Mater. Process. 2023, 7, 160. DOI: https://doi.org/10.3390/jmmp7050160
  91. Chen, E.S., Ahmadianshalchi, A., Sparks, S.S., et al. Machine Learning Enabled Design and Optimization for 3D-Printing of High-Fidelity Presurgical Organ Models. Adv. Mater. Technol. 2025, 10, 2400037. DOI: https://doi.org/10.1002/admt.202400037
  92. Abhishek, V.A.; Binny, S.; Johan, T.R.; et al. Federated Learning: Collaborative Machine Learning without Centralized Training Data. Int. J. Eng. Technol. Manag. Sci. 2022, 6, 355–359. DOI: https://doi.org/10.46647/ijetms.2022.v06i05.052
  93. El Houda, Z.A.; Moudoud, H.; Brik, B. Federated Deep Reinforcement Learning for Efficient Jamming Attack Mitigation in O-RAN. IEEE Trans. Veh. Technol. 2024, 73, 9334–9343. DOI: https://doi.org/10.1109/TVT.2024.3359998
  94. Zaw, C.W.; Pandey, S.R.; Kim, K.; et al. Energy-Aware Resource Management for Federated Learning in Multi-Access Edge Computing Systems. IEEE Access 2021, 9, 34938–34950. DOI: https://doi.org/10.1109/ACCESS.2021.3055523
  95. Tang, Y.; Du, G.; Long, J.; et al. Integration of Online Deep Reinforcement Learning and Federated Learning: A Dynamic Energy Management Strategy for Industrial Applications. IET Commun. 2023, 17, 2162–2177. DOI: https://doi.org/10.1049/cmu2.12686
  96. Tantithamthavorn, C.; Jiarpakdee, J. Explainable AI for Software Engineering. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 15–19 November 2021. DOI: https://doi.org/10.1109/ASE51524.2021.9678580
  97. Jiang, J.; Xin, P.; Wang, Y.; et al. A Priority-Based Online Container Placement Strategy for 5G MEC Cloud Enabled Smart Grid. In Proceedings of the 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR), Taicang, China, 6–8 June 2022. DOI: https://doi.org/10.1109/HPSR54439.2022.9831401
  98. Wang, T.; Jiang, Y.; Zhao, K.; et al. Energy-Efficient Edge-Cloud Collaborative Intelligent Computing: A Two-Timescale Approach. In Proceedings of the 2022 IEEE International Conference on Services Computing (SCC), Barcelona, Spain, 10–16 July 2022. DOI: https://doi.org/10.1109/SCC55611.2022.00044
  99. Bhandari, K.; Kumar, K.; Sangal, A.L. Artificial Intelligence in Software Engineering: Perspectives and Challenges. In Proceedings of the 2023 Third International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 26–28 May 2023. DOI: https://doi.org/10.1109/ICSCCC58608.2023.10176436
  100. Dalpiaz, F.; Niu, N. Requirements Engineering in the Days of Artificial Intelligence. IEEE Softw. 2020, 37, 7–10. DOI: https://doi.org/10.1109/MS.2020.2986047
  101. Ahmad, K. Human-centric Requirements Engineering for Artificial Intelligence Software Systems. In Proceedings of the 2021 IEEE 29th International Requirements Engineering Conference (RE), Notre Dame, IN, USA, 20–24 September 2021. DOI: https://doi.org/10.1109/RE51729.2021.00070
  102. Dzhusupova, R.; Bosch, J.; Olsson, H. Challenges in developing and deploying AI in the engineering, procurement and construction industry. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27 June–1 July 2022. pp. 1070–1075. DOI: https://doi.org/10.1109/COMPSAC54236.2022.00167
  103. Waller, M.; Rodrigues, O.; Lee, M.; et al. Bias Mitigation Methods: Applicability, Legality, and Recommendations for Development. J. Artif. Intell. Res. 2024, 81, 1043–1078. 10.1613/jair.1.16759
  104. Lelkó, A.; Németh, B.; Gáspár, P. Reinforcement Learning-Based Robust Vehicle Control for Autonomous Vehicle Trajectory Tracking. Eng. Proc. 2024, 79, 30. DOI: https://doi.org/10.3390/engproc2024079030
  105. Lo, D. Human-Centered AI for Software Engineering: Requirements, Reflection, and Road Ahead. In Proceedings of the 16th Innovations in Software Engineering Conference, Allahabad, India, 23–25 February 2023; p. 1. DOI: https://doi.org/10.1145/3578527.3581767
  106. Firouzi, F.; Farahani, B.J.; Marinšek, A. The Convergence and Interplay of Edge, Fog, and Cloud in the AI-Driven Internet of Things (IoT). Inf. Syst. 2021, 107, 101840. DOI: https://doi.org/10.1016/J.IS.2021.101840
  107. Li, G.; Wang, X.; Li, M. A Review of Recent Trends and Industry Prospects for Artificial Intelligence Technologies. In Proceedings of the 2021 8th International Conference on Behavioral and Social Computing (BESC), Doha, Qatar, 29–31 October 2021.
  108. Decardi-Nelson, B.; Alshehri, A.; You, F. Generative artificial intelligence in chemical engineering spans multiple scales. Front. Chem. Eng. 2024, 6, 1458156. DOI: https://doi.org/10.3389/fceng.2024.1458156
  109. Anstine, D.; Isayev, O. Generative Models as an Emerging Paradigm in the Chemical Sciences. J. Am. Chem. Soc. 2023, 145, 8736–8750. DOI: https://doi.org/10.1021/jacs.2c13467
  110. Back, S.; Aspuru-Guzik, A.; Ceriotti, M.; et al. Accelerated chemical science with AI. Dig. Discov. 2024, 3, 23–33. DOI: https://doi.org/10.1039/d3dd00213f
  111. Scheffler, M. AI guided workflows for efficiently screening the materials space. Coshare Sci. 2024, 2, 2. DOI: https://doi.org/10.61109/cs.202403.129
  112. Schweidtmann, A. Mining Chemical Process Information from Literature for Generative Process Design: A Perspective. Syst. Control Trans. 2024, 3, 84–91. DOI: https://doi.org/10.69997/sct.184704
  113. Yuriy, R.; Tatarina, O.; Kaminskyy, V.; et al. Modern Methods and Prospects for Using Artificial Intelligence in Disease Diagnostics: A Narrative Review. Futur. Med. 2024, 3, 11–24. DOI: https://doi.org/10.57125/fem.2024.12.30.02
  114. Ribeiro, M.; Singh, S.; Guestrin, C. Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. DOI: https://doi.org/10.1145/2939672.2939778