Article
Influence of vaccination on COVID-19 reproduction rate: Time trends and persistence analysis
Downloads
- Download
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
The authors shall retain the copyright of their work but allow the Publisher to publish, copy, distribute, and convey the work.
License
Trends in Immunotherapy (TI) publishes accepted manuscripts under Creative Commons Attribution 4.0 International (CC BY 4.0). Authors who submit their papers for publication by TI agree to have the CC BY 4.0 license applied to their work, and that anyone is allowed to reuse the article or part of it free of charge for any purpose, including commercial use. As long as the author and original source are properly cited, anyone may copy, redistribute, reuse, and transform the content.
This paper aims to study how the increase in vaccination rate in Israel affect to the behavior of COVID-19 reproduction rate, from 19 December 2020, to 25 April 2021. Multiple advanced econometrics methodologies are used to analyze the degree of persistence, to understand the relationship between these two times series and the long-term behavior. The results of our study indicate that the vaccinations cause long-run effects to COVID-19 reproduction rate and the vaccination provides useful information to predict the COVID-19 reproduction rate. Also, we determine whatever exogenous shocks related with the virus reproduction will have a very short impact over time. The first change in trend occurs on 13 January 2021, with 24.37% of the population vaccinated and when it can be seen that the increased rate of vaccinations causes the infection rate to decrease.
Keywords:
COVID-19 reproduction rate vaccination rate fractional integration FCVAR model wavelet analysisReferences
- Asselah T, Durantel D, Pasmant E, et al. COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology. 2021; 74(1): 168-184. doi: 10.1016/j.jhep.2020.09.031
- Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine. 2020; 382(13): 1199-1207. doi: 10.1056/nejmoa2001316
- Zaim S, Chong JH, Sankaranarayanan V, et al. COVID-19 and Multiorgan Response. Current Problems in Cardiology. 2020; 45(8): 100618. doi: 10.1016/j.cpcardiol.2020.100618
- Li YD, Chi WY, Su JH, et al. Coronavirus vaccine development: from SARS and MERS to COVID-19. Journal of Biomedical Science. 2020; 27(1). doi: 10.1186/s12929-020-00695-2
- Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine. 2020; 382(10): 929-936. doi: 10.1056/nejmoa2001191
- Cruz BS, and de Oliveira-Dias M. COVID-19: From outbreak to pandemic. Global Scientific Journals. 2020; 8(3).
- Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020; 584(7820): 257-261. doi: 10.1038/s41586-020-2405-7
- Sanche S, Lin YT, Xu C, et al. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases. 2020; 26(7): 1470-1477. doi: 10.3201/eid2607.200282
- Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. European Journal of Pharmacology. 2021; 892: 173751. doi: 10.1016/j.ejphar.2020.173751
- Calina D, Docea A, Petrakis D, et al. Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). International Journal of Molecular Medicine. 2020; 46(1): 3-16. doi: 10.3892/ijmm.2020.4596
- Lurie N, Saville M, Hatchett R, et al. Developing COVID-19 Vaccines at Pandemic Speed. New England Journal of Medicine. 2020; 382(21): 1969-1973. doi: 10.1056/nejmp2005630
- Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Tropica. 2021; 214: 105778. doi: 10.1016/j.actatropica.2020.105778
- Britton A, Jacobs Slifka KM, Edens C, et al. Effectiveness of the Pfizer-BioNTech COVID-19 Vaccine Among Residents of Two Skilled Nursing Facilities Experiencing COVID-19 Outbreaks—Connecticut, December 2020–February 2021. MMWR Morbidity and Mortality Weekly Report. 2021; 70(11): 396-401. doi: 10.15585/mmwr.mm7011e3
- Kustin T, Harel N, Finkel U, et al. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2 mRNA vaccinated individuals. Nat Med. 2021; 27: 1379–1384. doi: 10.1101/2021.04.06.21254882
- Haas EJ, Angulo FJ, McLaughlin JM, et al. (2021). Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. The Lancet. 2021; 397(10287): 1819-1829. doi: 10.1016/S0140-6736(21)00947-8
- Saban M, Myers V, Wilf-Miron R. Changes in infectivity, severity and vaccine effectiveness against delta COVID-19 variant ten months into the vaccination program: The Israeli case. Preventive Medicine. 2022; 154: 106890. doi: 10.1016/j.ypmed.2021.106890
- Kulhánek V. The impact of vaccinations on the development of COVID-19 pandemic. Univerzita Karlova, Fakulta sociálních věd; 2023.
- Li AY, Hannah TC, Durbin J, et al. Multivariate Analysis of Factors Affecting COVID-19 Case and Death Rate in U.S. Counties: The Significant Effects of Black Race and Temperature. The American Journal of the Medical Sciences. 2020. doi: 10.1101/2020.04.17.20069708
- Şahin M. Impact of weather on COVID-19 pandemic in Turkey. Science of The Total Environment. 2020; 728: 138810. doi: 10.1016/j.scitotenv.2020.138810
- Velasco JM, Tseng WC, Chang CL. Factors Affecting the Cases and Deaths of COVID-19 Victims. International Journal of Environmental Research and Public Health. 2021; 18(2): 674. doi: 10.3390/ijerph18020674
- Toharudin T, Pontoh RS, Caraka RE, et al. National Vaccination and Local Intervention Impacts on COVID-19 Cases. Sustainability. 2021; 13(15): 8282. doi: 10.3390/su13158282
- Rustagi V, Bajaj M, Tanvi, et al. Analyzing the Effect of Vaccination Over COVID Cases and Deaths in Asian Countries Using Machine Learning Models. Frontiers in Cellular and Infection Microbiology. 2022; 11. doi: 10.3389/fcimb.2021.806265
- Chen X, Huang H, Ju J, et al. Impact of vaccination on the COVID-19 pandemic in U.S. states. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-05498-z
- Kayano T, Sasanami M, Kobayashi T, et al. Number of averted COVID-19 cases and deaths attributable to reduced risk in vaccinated individuals in Japan. The Lancet Regional Health—Western Pacific. 2022; 28: 100571. doi: 10.1016/j.lanwpc.2022.100571
- Watson OJ, Barnsley G, Toor J, et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. The Lancet infectious diseases. 2022; 22(9): 1293-1302. doi: 10.1016/S1473-3099(22)00320-6
- Jain V, Serisier A, Lorgelly P. The Real-World Impact of Vaccination on COVID-19 Cases During Europe’s Fourth Wave. International Journal of Public Health. 2022; 67. doi: 10.3389/ijph.2022.1604793
- Liu Y, Liu J, Xia H, et al. Neutralizing Activity of BNT162b2-Elicited Serum. New England Journal of Medicine. 2021; 384(15): 1466-1468. doi: 10.1056/nejmc2102017
- Goldberg Y, Mandel M, Bar-On YM, et al. Waning Immunity after the BNT162b2 Vaccine in Israel. New England Journal of Medicine. 2021; 385(24). doi: 10.1056/nejmoa2114228
- Rosen B, Waitzberg R, Israeli A. Israel’s rapid rollout of vaccinations for COVID-19. Israel Journal of Health Policy Research. 2021; 10(1). doi: 10.1186/s13584-021-00440-6
- Dagan N, Barda N, Kepten E, et al. BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Mass Vaccination Setting. New England Journal of Medicine. 2021; 384(15): 1412-1423. doi: 10.1056/nejmoa2101765
- Hassan-Smith Z, Hanif W, & Khunti K. Who should be prioritised for COVID-19 vaccines? The Lancet. 2020; 396(10264): 1732-1733. doi: 10.1016/S0140-6736(20)32224-8
- Levine-Tiefenbrun M, Yelin I, Katz R, et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nature Medicine. 2021; 27(5): 790-792. doi: 10.1038/s41591-021-01316-7
- Amit S, Beni SA, Biber A, et al. Postvaccination COVID-19 among Healthcare Workers, Israel. Emerging Infectious Diseases. 2021; 27(4): 1220-1222. doi: 10.3201/eid2704.210016
- Broutin H, Mantilla-Beniers NB, Simondon F, et al. Epidemiological impact of vaccination on the dynamics of two childhood diseases in rural Senegal. Microbes and Infection. 2005; 7(4): 593-599. doi: 10.1016/j.micinf.2004.12.018
- Xiao D, Wu K, Tan X, et al. The impact of the vaccination program for hemorrhagic fever with renal syndrome in Hu County, China. Vaccine. 2014; 32(6): 740-745. doi: 10.1016/j.vaccine.2013.11.024
- Althouse BM, Scarpino SV. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Medicine. 2015; 13(1). doi: 10.1186/s12916-015-0382-8
- Shioda K, de Oliveira LH, Sanwogou J, et al. Identifying signatures of the impact of rotavirus vaccines on hospitalizations using sentinel surveillance data from Latin American countries. Vaccine. 2020; 38(2): 323-329. doi: 10.1016/j.vaccine.2019.10.010
- Biswas PK, Islam MdZ, Debnath NC, et al. Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1. Viboud C, ed. PLoS ONE. 2014; 9(6): e98471. doi: 10.1371/journal.pone.0098471
- Wang H, Tian CW, Wang WM, et al. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiology and Infection. 2018; 146(8): 935-939. doi: 10.1017/s0950268818001115
- Bohdanov S, Polyvianna Y, Chumachenko T, et al. Forecasting of salmonellosis epidemic proces in Ukraine using autoregressive integrated moving average model. Przeglad Epidemiologiczny. 2020; 74(2): 346-354. doi: 10.32394/pe.74.27
- Bai J, Perron P. Computation and analysis of multiple structural change models. Journal of Applied Econometrics. 2002; 18(1): 1-22. doi: 10.1002/jae.659
- Ritchie H, Ortiz-Ospina E, Beltekian D, et al. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 2 April 2024).
- Dickey DA, Fuller WA. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association. 1979; 74(366): 427. doi: 10.2307/2286348
- Phillips PCB, Perron P. Testing for a unit root in time series regression. Biometrika. 1988; 75(2): 335-346. doi: 10.1093/biomet/75.2.335
- Kwiatkowski D, Phillips PC, Schmidt P, and Shin Y. Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics. 1992; 54(1-3): 159-178. doi: 10.1016/0304-4076(92)90104-Y
- Elliott G, Rothenberg TJ, Stock JH. Efficient Tests for an Autoregressive Unit Root. Econometrica. 1996; 64(4): 813. doi: 10.2307/2171846
- Diebold FX, Rudebusch GD. Long memory and persistence in aggregate output. Journal of Monetary Economics. 1991; 28(1): 139-162.
- Hassler U, Wolters J. On the power of unit root tests against fractional alternatives. Journal of Econometrics. 1994; 63(1): 285-303. doi: 10.1016/0165-1765(94)90049-3
- Lee J, Schmidt P. On the power of the KPSS test of stationarity against fractionally integrated alternatives. Journal of Econometrics. 1996; 73(2): 285-302. doi: 10.1016/0304-4076(95)01741-0
- Akaike H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika. 1973; 60(2): 255-265. doi: 10.1093/biomet/60.2.255
- Akaike H. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika. 1979; 66(2): 237-242. doi: 10.1093/biomet/66.2.237
- Breitung J, Candelon B. Testing for short- and long-run causality: A frequency-domain approach. Journal of Econometrics. 2006; 132(2): 363-378. doi: 10.1016/j.jeconom.2005.02.004
- Tastan H. Testing for Spectral Granger Causality. The Stata Journal: Promoting communications on statistics and Stata. 2015; 15(4): 1157-1166. doi: 10.1177/1536867x1501500411
- Ciner C. Eurocurrency interest rate linkages: A frequency domain analysis. International Review of Economics & Finance. 2011; 20(4): 498-505. doi: 10.1016/j.iref.2010.09.006
- Kırca M, Canbay Ş, Pirali K. Is the relationship between oil-gas prices index and economic growth in Turkey permanent? Resources Policy. 2020; 69: 101838. doi: 10.1016/j.resourpol.2020.101838
- Geweke J. Measurement of Linear Dependence and Feedback between Multiple Time Series. Journal of the American Statistical Association. 1982; 77(378): 304-313. doi: 10.1080/01621459.1982.10477803
- Johansen S, Nielsen M. Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model. Econometrica. 2012; 80(6): 2667-2732. doi: 10.3982/ecta9299
- Crowley PM, & Mayes DG. How fused is the euro area core? An evaluation of growth cycle co-movement and synchronization using wavelet analysis. Journal of Business and Economic Statistics. 2009; 27(2): 271-287.
- Aguiar‐Conraria L, Soares MJ. The Continuous Wavelet Transform: Moving Beyond Uni—and Bivariate Analysis. Journal of Economic Surveys. 2013; 28(2): 344-375. doi: 10.1111/joes.12012
- Aguiar-Conraria L, Azevedo N, Soares MJ. Using wavelets to decompose the time–frequency effects of monetary policy. Physica A: Statistical Mechanics and its Applications. 2008; 387(12): 2863-2878. doi: 10.1016/j.physa.2008.01.063
- Sowell F. Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics. 1992; 53(1-3): 165-188. doi: 10.1016/0304-4076(92)90084-5
- Perron P, Vogelsang TJ. Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions. Journal of Business & Economic Statistics. 1992; 10(4): 467-470. doi: 10.1080/07350015.1992.10509923