Trends in Immunotherapy

Article

Review on phytochemical constituents of the genus Trichilia and biological activities

Downloads

Tuz Zohora, F., Sultana Joya, I., Ahmed Bhuiyan, M., Mahmood Hasan, C., & Ahsan, M. (2024). Review on phytochemical constituents of the genus Trichilia and biological activities. Trends in Immunotherapy, 8(1). https://doi.org/10.24294/ti.v8.i1.2434

Authors

  • Fatema Tuz Zohora
    Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
  • Irin Sultana Joya Department of Pharmacy, Primeasia University, Dhaka 1213, Bangladesh
  • Mohiuddin Ahmed Bhuiyan Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
  • Choudhury Mahmood Hasan Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
  • Monira Ahsan Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh

Studies conducted on the chemical composition of the genus Trichilia have isolated and identified 334 different compounds such as monoterpenes, diterpenes, sesquiterpenes, triterpenes, limonoids, steroids, coumarins, lignans, flavonoids, amino acid, phenolic acids, and lactones. This genus is used in traditional medicine for the manufacture of antibacterial, antioxidant, antiviral and antimalarial drugs. Indeed, our research with numerous Trichilia species has revealed that these plants exhibit antioxidant, antibacterial, anticholinesterase, neuroprotective, anti-inflammatory, and anti-anaphylactic properties against pathogens of major clinical value. The properties of analgesia, liver protection, and immunomodulation are also being studied. This study summarizes the main therapeutic uses of Genus Trichilia of species mentioned in the article and encourages future research into their usage in the treatment of various ailments as antimicrobial and anticancer.

Keywords:

Trichilia secondary metabolites biological activities antimicrobial anticancer

References

  1. The Plant List Version 1. Available online: http://www.theplantlist.org/ (accessed on 1 January 2021).
  2. Sytsma, Kenneth J. and Porter, Duncan M. “Sapindales” Encyclopedia Britannica. Available online: https://www.britannica.com/plant/Sapindales (accessed on 23 December 2021).
  3. Das GF, Da Silva MF, Gottlieb OR, Dreyer DL. Evolution of limonoids in the Meliaceae. Biochemical Systematics and Ecology. 1984, 12(3): 299-310. doi: 10.1016/0305-1978(84)90053-x
  4. Forman LL, Pennington TD, Styles BT. A Generic Monograph of the Meliaceae. Kew Bulletin. 1979, 34(2): 419. doi: 10.2307/4110009
  5. Pennington TD. Systematic Treatment of American Trichilia (Meliaceae). Phytotaxa. 2016, 259(1): 18. doi: 10.11646/phytotaxa.259.1.5
  6. Terra W, Vieira I, Braz-Filho R, et al. Lepidotrichilins A and B, New Protolimonoids with Cytotoxic Activity from Trichilia Lepidota (Meliaceae). Molecules. 2013, 18(10): 12180-12191. doi: 10.3390/molecules181012180
  7. del Carmen Ramı́rez M, Toscano RA, Arnason J, et al. Structure, Conformation and Absolute Configuration of New Antifeedant Dolabellanes from Trichilia trifolia. Tetrahedron. 2000, 56(29): 5085-5091. doi: 10.1016/s0040-4020(00)00423-3
  8. Khare S, Singh NB, Singh A, et al. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology. 2020, 63:203-216. doi: https://doi.org/10.1007/s12374-020-09245-7.
  9. Al-Khayri JM, Rashmi R, Toppo V, et al. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites. 2023, 13(6), 716.
  10. Ali Ghasemzadeh. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research. 2011, 5(31). doi: 10.5897/jmpr11.1404
  11. Cheynier V, Comte G, Davies KM, et al. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry. 2013, 72: 1-20. doi: 10.1016/j.plaphy.2013.05.009
  12. Gonzalez-Ramirez M, Limachi I, Manner S, et al. Trichilones A–E: New Limonoids from Trichilia adolfi. Molecules. 2021, 26(11): 3070. doi: 10.3390/molecules26113070
  13. Campos MM, Fernandes ES, Ferreira J, et al. Antidepressant-like effects of Trichilia catigua (Catuaba) extract: evidence for dopaminergic-mediated mechanisms. Psychopharmacology. 2005, 182(1): 45-53. doi: 10.1007/s00213-005-0052-1
  14. Taciany Bonassoli V, Micheli Chassot J, Longhini R, et al. Subchronic administration of Trichilia catigua ethyl-acetate fraction promotes antidepressant-like effects and increases hippocampal cell proliferation in mice. Journal of Ethnopharmacology. 2012, 143(1): 179-184. doi: 10.1016/j.jep.2012.06.021
  15. Viana AF, Maciel IS, Motta EM, et al. Antinociceptive Activity ofTrichilia catiguaHydroalcoholic Extract: New Evidence on Its Dopaminergic Effects. Evidence-Based Complementary and Alternative Medicine. 2011, 2011: 1-8. doi: 10.1093/ecam/nep14
  16. Truiti MT, Soares L, Longhini R, et al. Trichilia catigua ethyl-acetate fraction protects against cognitive impairments and hippocampal cell death induced by bilateral common carotid occlusion in mice. Journal of Ethnopharmacology. 2015, 172: 232-237. doi: 10.1016/j.jep.2015.05.060
  17. Espada S, Faccin-Galhardi L, Rincao V, et al. Antiviral Activity of Trichilia catigua Bark Extracts for Herpesvirus and Poliovirus. Current Pharmaceutical Biotechnology. 2015, 16(8): 724-732. doi: 10.2174/1389201016666150505125235
  18. Gomes RM, de Paulo LF, Bonato Panizzon CP do N, et al. Anti-Diabetic Effects of the Ethyl-Acetate Fraction of Trichilia catigua in Streptozo-tocin-Induced Type 1 Diabetic Rats. Cellular Physiology and Biochemistry. 2017, 42(3): 1087-1097. doi: 10.1159/000478761
  19. Martins NO, de Brito IM, Araújo SSO, et al. Antioxidant, anticholinesterase and antifatigue effects of Trichilia catigua (catuaba). BMC Complementary and Alternative Medicine. 2018, 18(1). doi: 10.1186/s12906-018-2222-9
  20. Ogbole OO, Akinleye TE, Segun PA, et al. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virology journal. 2018,15:1-8. doi: https://doi.org/10.1186/s12985-018-1022-7
  21. Ritter MR, Tempesta de O Marcelo, Makimori RY, et al. Dimeric glycosylated flavan-3-ol and antimicrobial in vitro evaluation of Trichilia catigua extracts. Natural Product Research. 2019, 35(19): 3293-3300. doi: 10.1080/14786419.2019.1698569
  22. Germanò MP, D’Angelo V, Sanogo R, et al. Hepatoprotective and antibacterial effects of extracts from Trichilia emetica Vahl. (Meliaceae). Journal of Ethnopharmacology. 2005, 96(1-2): 227-232. doi: 10.1016/j.jep.2004.09.011
  23. Eldeen IMS, Elgorashi EE, van Staden J. Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. Journal of Ethnopharmacology. 2005, 102(3): 457-464. doi: 10.1016/j.jep.2005.08.049
  24. Geyid A, Abebe D, Debella A, et al. Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. Journal of Ethnopharmacology. 2005, 97(3): 421-427. doi: 10.1016/j.jep.2004.08.021
  25. Sosa EH, Duharte AB, Portuondo D, et al. Immunorestorative in immunosuppressed Balb/c mice and cytotoxic activity of water extract from Trichilia hirta root. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2010, 9(6): 457-464. https://corpus.co.id/en/lil-644984
  26. Sosa EH, Castejón YM, Duharte AB, et al. Leukocyte-Stimulating Effect and Phytochemical Screening ofTrichilia hirtaExtracts. Journal of Medicinal Food. 2011, 14(9): 1057-1059. doi: 10.1089/jmf.2010.0166
  27. Hernandez E, González B, Díaz A, et al. Ethnopharmacological evaluation of Trichilia hirta L. as anticancer source in traditional medicine of Santiago de Cuba. Bol. latinoam. Caribe de plantas medicinales y aromáticas. 2013, 12: 176-185. https://corpus.co.id/en/lil-722790.
  28. Sosa EH, Mora Gonzalez N, Morris Q, Humberto J. Actividad citotóxica de extractos acuosos de hojas de Trichilia hirta sobre células tumorales humanas. Cuban Journal of Biomedical Research. 2013, 32(1): 93-101. https://corpus.co.id/en/lil-673097
  29. Krief S, Huffman MA, Sévenet T, et al. Bioactive properties of plant species ingested by chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. American Journal of Primatology. 2006, 68(1): 51-71. doi: 10.1002/ajp.20206
  30. Kuglerova M, Halamova K, Kokoska L, et al. Antimicrobial activity of Ugandan Medicinal Plants. Planta Medica. 2007, 73(09). doi: 10.1055/s-2007-986895
  31. Eldeen IM, Van Staden J. Antimycobacterial activity of some trees used in South African traditional medicine. South African Journal of Botany. 2007 Apr 1;73(2):248-51.
  32. Naidoo D, van Vuuren SF, van Zyl RL, et al. Plants traditionally used individually and in combination to treat sexually transmitted infections in northern Maputaland, South Africa: Antimicrobial activity and cytotoxicity. Journal of Ethnopharmacology. 2013, 149(3): 656-667. doi: 10.1016/j.jep.2013.07.018
  33. Opawale B, Oyetayo A, Agbaje R. Phytochemical Screening, Antifungal and Cytotoxic Activities of Trichilia heudelotii Planc (Harm). International Journal of Sciences: Basic and Applied Research. 2015, 24(6): 267-276. https://corpus.co.id/en/56442254
  34. Silva LL da, Almeida R de, Silva FT e, et al. Review on the therapeutic activities of the genus Trichilia. Research, Society and Development. 2021, 10(5): e29610514916. doi: 10.33448/rsd-v10i5.14916
  35. Da Silva JV, dos Santos RC, Júnior PCO, et al. Anti-inflammatory, Antioxidant and Antiproliferative Activities from Trichilia silvatica (C.DC). Current Pharmaceutical Biotechnology. 2019, 19(12): 973-981. doi: 10.2174/1389201020666181123121817
  36. Ben I, Woode E, Koffuor G, et al. Anti-anaphylactic effects of Trichilia monadelpha (Thonn.) J. J. De Wilde extracts on rodent models of anaphylaxis. Research in Pharmaceutical Sciences. 2016, 11(5): 397. doi: 10.4103/1735-5362.192491
  37. Subbarao P, Ashok P. Antihyperlipidemic effect of Trichilia connaroides in hypercholesterolemic rats and its possible mechanism. Journal of Pharmacy and Bioallied Sciences. 2011, 3(2): 230. doi: 10.4103/0975-7406.80777
  38. Pant AK, Kumar R, Verma G, et al. Head Space GC/MS Analysis of Volatile Constituents of Trichilea connaroides Wight and Arn. Extracts and their in vitro Anti- Plasmodium Activity Against Plasmodium falciparum Isolates. Research Journal of Phytochemistry. 2011, 5(1): 41-47. doi: 10.3923/rjphyto.2011.41.47
  39. Tissot AC, Oliveira SL, Duque JEL, et al. Evaluation of the Repellent Effect of the Essential Oil from the Leaves of Trichilia pallida Swartz (Meliaceae) on Aedes aegypti Mosquitoes (Portuguese). In: Proceedings of the 34th Annual Convention of Brazilian Society of Chemistry; 23-26 May 2011; Florianópolis City, Santa Catarina State. CD Data.
  40. Traore M, Zhai L, Chen M, et al. Cytotoxic kurubasch aldehyde fromTrichilia emetica. Natural Product Research. 2007, 21(1): 13-17. doi: 10.1080/14786410600921698
  41. Garcez WS, Garcez FR, Ramos L, et al. Sesquiterpenes from Trichilia catigua. Fitoterapia. 1997, 68(1): 87-88.
  42. Curcino Vieira IJ, da Silva Terra W, dos Santos Gonçalves M, et al. Secondary Metabolites of the Genus Trichilia: Contribution to the Chemistry of Meliaceae Family. American Journal of Analytical Chemistry. 2014, 05(02): 91-121. doi: 10.4236/ajac.2014.52014
  43. Senthilkumar N, Murugesan S, Vijayalakshmi KB. GC-MS-MS analysis of Trichilia connaroides (Wight & Arn.) Bentv (Meliaceae): A tree of ethnobotanical records. Asian J Plant Sci Res. 2012;2(2):193-97.
  44. Doe M, Shibue T, Haraguchi H, et al. Structures, Biological Activities, and Total Syntheses of 13-Hydroxy- and 13-Acetoxy-14-nordehydrocacalohastine, Novel Modified Furanoeremophilane-Type Sesquiterpenes from Trichilia cuneata. Organic Letters. 2005, 7(9): 1765-1768. doi: 10.1021/ol050346k
  45. Nangmo KP, Tsamo TA, Zhen L, Mkounga P, Akone SH, Tsabang N, Müller WE, Marat K, Proksch P, Nkengfack AE. Chemical constituents from leaves and root bark of Trichilia monadelpha (Meliaceae). Phytochemistry Letters. 2018 Feb 1;23:120-6.
  46. Paritala V, Chiruvella KK, Thammineni C, et al. Phytochemicals and antimicrobial potentials of mahogany family. Revista Brasileira de Farmacognosia. 2015, 25(1): 61-83.
  47. Vieira IJC, Figueiredo ER, Vieira MGC, et al. Two novel cycloartane-type triterpenes from Trichilia casaretti C. DC.(Meliaceae). Molecules. 2018, 23(4): 949.
  48. Pupo MT, Adorno MAT, Vieira PC, et al. Terpenoids and Steroids from Trichilia Species. Journal of the Brazilian Chemical Society. 2002, 13(3): 382-388. doi: 10.1590/s0103-50532002000300014
  49. Rodrigues VF, Carmo HM, Oliveira RR, et al. Isolation of Terpenoids from Trichilia quadrijuga (Meliaceae) by Droplet Counter-Current Chromatography. Chromatographia. 2009, 70(7-8): 1191-1195. doi: 10.1365/s10337-009-1293-7
  50. Benjamin O, Michael O, Modupe AA. Evaluation of bioactivity of stem bark extracts of Lovoa trichiliodes (Harm) and Trichilia heudelotii Planc (Harm). GSC Biological and Pharmaceutical Sciences. 2018, 2(1): 001–008. doi: 10.30574/gscbps.2018.2.1.0019
  51. Aladesanmi AJ, Odediran SA. Antimicrobial activity of Trichilia heudelotti leaves. Fitoterapia. 2000, 71(2): 179-182. doi: 10.1016/s0367-326x(99)00143-4
  52. Mosqueta IS. Morphology and Development of Fruits, Seeds and Seedlings of Cabralea canjerana Vell. Mart., Guarea Kunthiana A. Juss and Trichilia catigua A. Juss (Meliaceae-Melioideae) (Portuguese) [Master’s thesis]. Paulista State University; 1995.
  53. Ji KL, Zhang P, Li XN, et al. Cytotoxic limonoids from Trichilia americana leaves. Phytochemistry. 2015, 118: 61-67. doi: 10.1016/j.phytochem.2015.08.014
  54. Chan WR, Taylor DR. Hirtin and deacetylhirtin: new “limonoids” from Trichilia hirta. Chem Commun (London). 1966, 0(7): 206-207. doi: 10.1039/c19660000206
  55. Cortez DAG, Vieira PC, Fernandes JB, et al. Limonoids from Trichilia hirta. Phytochemistry. 1992, 31(2): 625-628. doi: 10.1016/0031-9422(92)90048-u
  56. Simmonds MS, Stevenson PC, Porter EA, Veitch NC. Insect Antifeedant Activity of Three New Tetranortriterpenoids from Trichilia p allida. Journal of Natural Products. 2001 Aug 24;64(8):1117-20.
  57. Curcino Vieira MG, Filho RB, Curcino Vieira IvoJ. Curcinomarcoide, a Novel Limonoid from Trichilia hirta (Meliaceae)—Complete 1H and 13C Chemical Shift Assignments. Natural Product Communications. 2019, 14(5): 1934578X1984361. doi: 10.1177/1934578x19843611
  58. Longhini R, Lonni AA, Sereia AL, et al. Trichilia catigua: therapeutic and cosmetic values. Revista Brasileira de Farmacognosia. 2017, 27: 254-71.
  59. Matos AP, Nebo L, Vieira PC, et al. Constituintes químicos e atividade inseticida dos extratos de frutos de Trichilia elegans E T. catigua (Meliaceae). Química Nova. 2009, 32(6): 1553-1556. doi: 10.1590/s0100-40422009000600037
  60. Liu SB, Chen HQ, Feng G, et al. A new insecticidal havanensin-type limonoid from the roots of Trichilia sinensis Bentv. Natural Product Research. 2017, 32(23): 2797-2802. doi: 10.1080/14786419.2017.1380016
  61. Arenas C, Rodriguez-Hahn L. Limonoids from Trichilia havanensis. Phytochemistry. 1990, 29(9): 2953-2956. doi: 10.1016/0031-9422(90)87113-9
  62. Passos MS, Nogueira TS, Azevedo OD, Vieira MG, Terra WD, Braz-Filho R, Vieira IJ. Limonoids from the genus Trichilia and biological activities. Phytochemistry Reviews. 2021 Oct 1:1-32.
  63. Rodríguez-Hahn L, Cárdenas J, Arenas C. Trichavensin, a prieurianin derivative from Trichilia havanensis. Phytochemistry. 1996, 43(2): 457-459. doi: 10.1016/0031-9422(96)00245-2
  64. Ortego F, López-Olguı́n J, Ruı́z M, et al. Effects of Toxic and Deterrent Terpenoids on Digestive Protease and Detoxication Enzyme Activities of Colorado Potato Beetle Larvae. Pesticide Biochemistry and Physiology. 1999, 63(2): 76-84. doi: 10.1006/pest.1998.2386
  65. Taylor DR. New limonoids from Trichilia trifolia. Rev Latinoam Quı´m. 1971, 2: 87–92
  66. Kubo I, Klocke JA. An insect growth inhibitor fromTrichilia roka (Meliaceae). Experientia. 1982, 38(6): 639-640. doi: 10.1007/bf01964065
  67. Nakatani M, James JC, Nakanishi K. Isolation and structures of trichilins, antifeedants against the Southern army worm. Journal of the American Chemical Society. 1981, 103(5): 1228-1230. doi: 10.1021/ja00395a046
  68. Nakatani M, Nakanishi K. Structures of Insect Antifeeding Limonoids, Trichilins F and G, from Trichilia roka. Heterocycles. 1993, 36(4): 725. doi: 10.3987/com-92-6194
  69. Germanò MP, D’Angelo V, Biasini T, Sanogo R, De Pasquale R, Catania S. Evaluation of the antioxidant properties and bioavailability of free and bound phenolic acids from Trichilia emetica Vahl. Journal of ethnopharmacology. 2006 May 24;105(3):368-73.
  70. Gunatilaka AAL, da Bolzani SV, Dagne E et al (1998) Limonoids showing selective toxicity to DNA repair-deficient yeast and other constituents of Trichilia emetica. J Nat Prod 61:179–184
  71. Liu SB, Mei WL, Chen HQ, et al. Limonoids from the roots of Trichilia sinensis and their cytotoxicities. Archives of Pharmacal Research. 2017, 41(12): 1170-1177. doi: 10.1007/s12272-017-0915-0
  72. Nakatani M, Iwashita T, Mizukawa K, et al. Trichilinin, a New Hexacyclic Limonoid from Trichilia roka. Heterocycles. 1987, 26(1): 43. doi: 10.3987/r-1987-01-0043
  73. Armelle TT, Pamela NK, Pierre M, et al. Antiplasmodial Limonoids from Trichilia rubescens (Meliaceae). Medicinal Chemistry. 2016, 12(7): 655-661. doi: 10.2174/1573406412666160106154357
  74. Tsamo Tontsa A, Mkounga P, Njayou FN, et al. Rubescins A, B and C: new havanensin type limonoids from root bark of Trichilia rubescens (Meliaceae). Chemical and Pharmaceutical Bulletin. 2013, 61(11): 1178-1183. doi: 10.1248/cpb.c13-00506
  75. Tsamo AT, Melong R, Mkounga P, et al. Rubescins I and J, further limonoid derivatives from the stem bark of Trichilia rubescens (Meliaceae). Natural Product Research. 2018, 33(2): 196-203. doi: 10.1080/14786419.2018.1443087
  76. Krief S, Martin MT, Grellier P, et al. Novel Antimalarial Compounds Isolated in a Survey of Self-Medicative Behavior of Wild Chimpanzees in Uganda. Antimicrobial Agents and Chemotherapy. 2004, 48(8): 3196-3199. doi: 10.1128/aac.48.8.3196-3199.2004
  77. Tsamo AT, Pagna JIM, Nangmo PK, et al. Rubescins F–H, new vilasinin-type limonoids from the leaves of Trichilia rubescens (Meliaceae). Zeitschrift für Naturforschung C. 2019, 74(7-8): 175-182. doi: 10.1515/znc-2018-0187
  78. deCarvalho ACV, Ndi CP, Tsopmo A, et al. A Novel Natural Product Compound Enhances cAMP-Regulated Chloride Conductance of Cells Expressing CFTRΔF508. Molecular Medicine. 2002, 8(2): 75-87. doi: 10.1007/bf03402077
  79. Cortez DAG, Fernandes JB, Vieria PC, et al. Meliacin butenolides from Trichilia estipulata. Phytochemistry. 1998, 49(8): 2493-2496. doi: 10.1016/s0031-9422(98)00234-9
  80. Connolly JD, Hill RA. Triterpenoids. Natural Product Reports. 2002;19(4):494-513.
  81. Cortez DAG, Fernandes JB, Vieira PC, et al. Separation and purification of meliacin butenolides from Trichilia estipulata by normal-phase HPLC. Journal of Liquid Chromatography & Related Technologies. 2001, 24(3): 415-423. doi: 10.1081/jlc-100001344
  82. Kowa TK, Tchokouaha LRY, Cieckiewicz E, et al. Antileishmanial and cytotoxic activities of a new limonoid and a new phenyl alkene from the stem bark of Trichilia gilgiana (Meliaceae). Natural Product Research. 2019, 34(22): 3182-3188. doi: 10.1080/14786419.2018.1553879
  83. Chan WR, Gibbs JA, Taylor DR. The limonoids of Trichilia havanensis JACQ: An epoxide rearrangement. Chemical Communications (London). 1967, (14): 720. doi: 10.1039/c19670000720
  84. Champagne DE, Koul O, Isman MB, et al. Biological activity of limonoids from the Rutales. Phytochemistry. 1992, 31(2): 377-94.
  85. Okorie DA, Taylor DAH. The structure of heudelottin, an extractive from Trichilia heudelottii. Chemical Communications (London). 1967, (2): 83. doi: 10.1039/c19670000083
  86. Okorie DA, Taylor DAH. Limonoids from the timber of Trichilia heudelottii Planch. ex Oliv. Journal of the Chemical Society C: Organic. Published online 1968: 1828. doi: 10.1039/j39680001828
  87. Mulholland DA, Taylor DAH. Limonoids from the seed of the natal mahogany, Trichilia dregeana. Phytochemistry. 1980, 19(11): 2421-2425. doi: 10.1016/s0031-9422(00)91040-9
  88. Komane BM, Olivier EI, Viljoen AM. Trichilia emetica (Meliaceae)–A review of traditional uses, biological activities and phytochemistry. Phytochemistry Letters. 2011, 4(1): 1-9.
  89. Musza L, Killar LM, Speight P, et al. Minor limonoids from Trichilia rubra. Phytochemistry. 1995, 39(3): 621-624. doi: 10.1016/0031-9422(94)00959-w
  90. Adesida GA, Okorie DA. Heudebolin: A new limonoid from Trichilia heudelotii. Phytochemistry. 1973, 12(12): 3007-3008. doi: 10.1016/0031-9422(73)80532-1
  91. Tinto WF, Jagessar PK, Ketwaru P, et al. Constituents of Trichilia schomburgkii. Journal of Natural Products. 1991, 54(4): 972-977. doi: 10.1021/np50076a008
  92. Connolly JD, Labbé C, Rycroft DS et al. Tetranortriterpenoids and related compounds. Part 23. Complex tetranortriterpenoids from Trichilia prieuriana and Guarea thompsonii (Meliaceae), and the hydrolysis products of dregeanin, prieurianin, and related compounds. Journal of Chemical Research. 1979, 8: 256–257.
  93. Tsamo A, Langat MK, Nkounga P, et al. Limonoids from the West African Trichilia welwitschii (Meliaceae). Biochemical Systematics and Ecology. 2013, 50: 368-370. doi: 10.1016/j.bse.2013.04.011
  94. Rodríguez B, Caballero C, Ortego F, Castañera P. A New Tetranortriterpenoid from Trichilia h avanensis. Journal of natural products. 2003, 66(3):452-4.
  95. Jolad SD, Hoffmann JJ, Schram KH, et al. Constituents of Trichilia hispida (Meliaceae). 3. Structures of the cytotoxic limonoids: hispidins A, B, and C. The Journal of Organic Chemistry. 1981, 46(3): 641-644. doi: 10.1021/jo00316a035
  96. Eldeen IM, Van Heerden FR, Van Staden J. Biological activities of cycloart-23-ene-3, 25-diol isolated from the leaves of Trichilia dregeana. South African Journal of Botany. 2007, 73(3):366-71.
  97. Garcez FR, Garcez WS, Tsutsumi MT, et al. Limonoids from Trichilia elegans ssp. elegans. Phytochemistry. 1997, 45(1): 141-148. doi: 10.1016/s0031-9422(96)00737-6
  98. Org CG. The Plant List with literature.
  99. Nayak S, Chaphekar M, Vaidhun B. Ethnobotanical review of Trichilia catigua A. Juss. Annals of Plant Sciences. 2013, 2(11): 497-502.
  100. Wang XN, Fan CQ, Yin S, et al. Structural elucidation of limonoids and steroids from Trichilia connaroides. Phytochemistry. 2008, 69(6): 1319-1327. doi: 10.1016/j.phytochem.2008.01.018
  101. Liu CP, Xu JB, Han YS, et al. Trichiconins A–C, Limonoids with New Carbon Skeletons from Trichilia connaroides. Organic Letters. 2014, 16(20): 5478-5481. doi: 10.1021/ol5027552
  102. Chen AH, Wen Q, Ma YL, et al. Bioactive mexicanolide-type limonoids from the fruits of Trichilia connaroides. Phytochemistry Letters. 2017, 20: 17-21. doi: 10.1016/j.phytol.2017.03.008
  103. Inada A, Konishi M, Murata H, et al. Structures of a New Limonoid and a New Triterpenoid Derivative from Pericarps of Trichilia connaroides. Journal of Natural Products. 1994, 57(10): 1446-1449. doi: 10.1021/np50112a016
  104. Wang GC, Fan YY, Shyaula SL, et al. Triconoids A–D, Four Limonoids Possess Two Rearranged Carbon Skeletons from Trichilia connaroides. Organic Letters. 2017, 19(8): 2182-2185. doi: 10.1021/acs.orglett.7b00873
  105. Ji KL, Cao DH, Li XF, et al. Two new limonoids from the roots of Trichilia connaroides with inhibitory activity against nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. Phytochemistry Letters. 2015, 14: 234-238. doi: 10.1016/j.phytol.2015.10.020
  106. Liu SB, Mei WL, Chen HQ, et al. Mexicanolide-Type Limonoids from the Roots of Trichilia sinensis. Molecules. 2016, 21(9): 1152. doi: 10.3390/molecules21091152
  107. Liu SB, Chen HQ, Guo ZK, et al. Phragmalin-type limonoids from the roots of Trichilia sinensis. RSC Advances. 2017, 7(46): 28994-29003. doi: 10.1039/c7ra01785e
  108. Zhang Q, Di YT, He HP, et al. Phragmalin- and Mexicanolide-Type Limonoids from the Leaves of Trichilia connaroides. Journal of Natural Products. 2011, 74(2): 152-157. doi: 10.1021/np100428u
  109. An FL, Luo J, Wang XB, et al. Trichiconlides A and B: two novel limonoids from the fruits of Trichilia connaroides. Organic & Biomolecular Chemistry. 2016, 14(4): 1231-1235. doi: 10.1039/c5ob02300a
  110. An FL, Sun DM, Wang XB, et al. Trichiconlides C F, four new limonoids with 1,2-seco phragmalin-type carbon skeleton from the fruits of Trichilia connaroides. Fitoterapia. 2018, 125: 72-77. doi: 10.1016/j.fitote.2017.12.023
  111. Wang HY, Wang JS, Zhang Y, et al. Inhibitory effect of four triterpenoids from Trichilia connaroides on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells. Chemical and Pharmaceutical Bulletin. 2013, 61(10): 1075-1080. doi: 10.1248/cpb.c13-00286
  112. Fang X, Di Y, Geng Z, et al. Trichiliton A, a Novel Limonoid from Trichilia connaroides. European Journal of Organic Chemistry. 2010, 2010(7): 1381-1387. doi: 10.1002/ejoc.200901245
  113. An FL, Luo J, Li RJ, Luo JG, Wang XB, Yang MH, Yang L, Yao HQ, Sun HB, Chen YJ, Kong LY. Spirotrichilins A and B: two rearranged spirocyclic limonoids from Trichilia connaroides. Organic letters. 2016 Apr 15;18(8):1924-7.
  114. Geng ZL, Fang X, Di YT, et al. Trichilin B, a novel limonoid with highly rearranged ring system from Trichilia connaroides. Tetrahedron Letters. 2009, 50(18): 2132-2134. doi: 10.1016/j.tetlet.2009.02.147
  115. Geng ZL, Fang X, Di YT, et al. A New Limonoid fromTrichilia connaroides. Zeitschrift für Naturforschung B. 2010, 65(6): 762-764. doi: 10.1515/znb-2010-0613
  116. Tang W, Hioki H, Harada K, et al. Antioxidant Phenylpropanoid-Substituted Epicatechins from Trichilia catigua. Journal of Natural Products. 2007, 70(12): 2010-2013. doi: 10.1021/np0703895
  117. Rocha WC. Search for Bioactive Substances in Amazonian Plants: Adiscanthus fusciflorus (Rutaceae), Trichilia pallida and T. rubra (Meliaceae) (Portuguese) [Master’s thesis]. Federal University of São Carlos; 2004.
  118. Lagos JB. Comparative Study of the Chemical Composition of the Leaves and Bark of Trichilia catigua A. Juss., Meliaceae (Portuguese) [Master’s thesis]. Federal University of Paraná; 2006.
  119. Dudecula M, Somasekhar V, Purnima A, Patil S. Isolation, Characterization and Pharmacological Studies of a Flavonol Glucoside from Trichilia connaroides (W & A) Bentilizen. International Journal of Research in Science. 2011, 1(2): 91-101.
  120. Beltrame FL, Filho ER, Barros FAP, et al. A validated higher-performance liquid chromatography method for quantification of cinchonain Ib in bark and phytopharmaceuticals of Trichilia catigua used as Catuaba. Journal of Chromatography A. 2006, 1119(1-2): 257-263. doi: 10.1016/j.chroma.2005.10.050
  121. Cortez DAG, Fernandes JB, Cass QB, et al. Lignan Glycosides fromTrichilia estipulataBark. Natural Product Letters. 1998, 11(4): 255-262. doi: 10.1080/10575639808044957
  122. Figueiredo. Phytochemical study of Trichilia casarettii and Trichilia sylvatica (Portuguese) [PhD thesis]. State University of North Fluminense, Campos dos Goytacazes; 2010.
  123. Pupo MT, Vieira PC, Fernandes JB, et al. γ-lactones from Trichilia claussenii. Phytochemistry. 1998, 48(2): 307-310. doi: 10.1016/s0031-9422(97)01089-3
  124. Lu H, Li J, Lu X, et al. Chemical Constituents of Trichilia connaroides (Chinese). Chinese Traditional Patent Medicine. 2011, 33: 1194-1196. doi: 10.1007/s10570-010-9464-0
  125. Kougan GB, Tabopda T, Kuete V, Verpoorte R. Simple phenols, phenolic acids, and related esters from the medicinal plants of Africa. InMedicinal plant research in Africa 2013 Jan 1 (pp. 225-249). Elsevier.
  126. Cazal CM, Alves AR, Matos AP, et al. Chemical Constituents of Trichilia sp (Meliaceae) and Biological Activity of Its Organic Extracts on Spodoptera frugiperda (Portuguese). In: Proceedings of the 31st Annual Convention of Brazilian Society of Chemistry; 26-29 May 2008; Águas de Lindóia City, São Paulo State. CD Data.
  127. Tsopgni WD, Happi GM, Stammler HG, et al. Chemical constituents from the bark of the Cameroonian mahogany Trichilia emetica Vahl (Meliaceae). Phytochemistry Letters. 2019, 33:49-54.