Editorial
The Nobel Prize in Physiology or Medicine 2023 was awarded for discoveries concerning base modifications that enabled the development of effective mRNA vaccines against COVID-19
Downloads
- Download
Furukawa, F. (2024). The Nobel Prize in Physiology or Medicine 2023 was awarded for discoveries concerning base modifications that enabled the development of effective mRNA vaccines against COVID-19. Trends in Immunotherapy, 8(1). https://doi.org/10.24294/ti.v8.i1.3463
Copyright (c) 2024 Fukumi Furukawa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
The authors shall retain the copyright of their work but allow the Publisher to publish, copy, distribute, and convey the work.
License
Trends in Immunotherapy (TI) publishes accepted manuscripts under Creative Commons Attribution 4.0 International (CC BY 4.0). Authors who submit their papers for publication by TI agree to have the CC BY 4.0 license applied to their work, and that anyone is allowed to reuse the article or part of it free of charge for any purpose, including commercial use. As long as the author and original source are properly cited, anyone may copy, redistribute, reuse, and transform the content.
References
- Available online: https://www.nobelprize.org/prizes/medicine/2023/press-release/ (accessed on 18 October 2023).
- Available online: https://www.nobelprize.org/prizes/medicine/2023/summary/ (accessed on 18 October 2023).
- Karikó K, Buckstein M, Ni H, et al. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity. 2005, 23(2): 165-175. doi: 10.1016/j.immuni.2005.06.008
- Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Molecular Therapy. 2008, 16(11): 1833-1840. doi: 10.1038/mt.2008.200
- Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research. 2010, 38(17): 5884-5892. doi: 10.1093/nar/gkq347
- Kayano T, Sasanami M, Kobayashi T, et al. Number of averted COVID-19 cases and deaths attributable to reduced risk in vaccinated individuals in Japan. The Lancet Regional Health - Western Pacific. 2022, 28: 100571. doi: 10.1016/j.lanwpc.2022.100571
- Lamprinou M, Sachinidis A, Stamoula E, et al. COVID-19 vaccines adverse events: potential molecular mechanisms. Immunologic Research. 2023, 71(3): 356-372. doi: 10.1007/s12026-023-09357-5
- Ogata AF, Cheng CA, Desjardins M, et al. Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clinical Infectious Diseases. 2021, 74(4): 715-718. doi: 10.1093/cid/ciab465
- Ghaderi S, Mohammadi S. Post-COVID-19 vaccination and the brain: A critical analysis of CNS MRI findings. Trends in Immunotherapy. 2023, 7(2): 2885. doi: 10.24294/ti.v7.i2.2885
- Ishikawa O. The pathophysiology and clinical phenotypes of COVID-19 mRNA vaccine-related cutaneous adverse reactions: A narrative review. Trends in Immunotherapy [in press].
- Matsuo A, Nakashima C, Yanagihara S, et al. Two cases of COVID-19 vaccine-related erythema multiforme under the administration of immune checkpoint inhibitors. Trends in Immunotherapy. 2023, 7(2): 2683. doi: 10.24294/ti.v7.i2.2683
- Furukawa F. The Nobel Prize in Physiology or Medicine 2018 was awarded to Cancer Therapy by Inhibition of Negative Immune Regulation. Trends in Immunotherapy. 2018, 2(1). doi: 10.24294/ti.v2.i1.1065