Trends in Immunotherapy

Review

Novel approaches for allergen-specific immunotherapy—An overview

Downloads

Sakshi, S., Mazumder, R., Monika, M., Singh, N., & Kumar, B. (2023). Novel approaches for allergen-specific immunotherapy—An overview. Trends in Immunotherapy, 7(1). https://doi.org/10.24294/ti.v7.i1.2026

Authors

  • Sakshi Sakshi Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, Uttar Pradesh, India
  • Rupa Mazumder
    Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, Uttar Pradesh, India.
  • Monika Monika Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, Uttar Pradesh, India.
  • Neha Singh Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, Uttar Pradesh, India.
  • Bimlesh Kumar School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 44411, Punjab, India.

Allergen-specific immunotherapy (AIT) is an allergen-specific treatment for people with IgE-related allergies. Allergen-specific immunotherapy (AIT) is used to treat allergic disorders when symptoms persist despite medication and allergen avoidance. The therapy is presumed effective if it reduces the use of medications, improves the quality of life even after discontinuation of treatment, as well as prevents the conversion of one type of allergy to the other and the development of new sensitization. The allergen-specific immunotherapeutic agents can be administered sublingually, subcutaneously, or through some other routes, such as intra-lymphatically and epicutaneously to induce allergen tolerance by modifying immune responses (innate and adaptive). The primary mechanism of AIT is the induction of functional regulatory cells, such as regulatory T cells, follicular T cells, B cells, dendritic cells, innate lymphoid cells, and natural killer cells, which results in the control of the functions of type 2 inflammatory cells. However, there are several downsides to AIT, including the contentious treatment period resulting in high cost, systemic allergic reactions, and the lack of a biomarker for forecasting treatment responders. Vaccine adjuvants, adjunctive therapies, and novel vaccine technologies are currently being researched to address the issues associated with AIT. This article focuses on defined molecular approaches for improving the potential of specific immunotherapy that use recombinant allergen derivatives, allergen-derived peptides, virus-coupled allergens, nanoparticles, and specific adjuvants.

Keywords:

Immunotherapy Allergy Allergen-specific Immunotherapy T Cells Dendritic Cells Immune Responses Allergen-derived Peptides Adjuvants

References

  1. Goss FR, Zhou L, Plasek JM, et al. Evaluating standard terminologies for encoding allergy information. Journal of the American Medical Informatics Association 2013; 20(5): 969–979. doi: 10.1136/amiajnl-2012-000816.
  2. Larsen JN, Broge L, Jacobi H. Allergy immunotherapy: The future of allergy treatment. Drug Discovery Today 2016; 21(1): 26–37. doi: 10.1016/j.drudis.2015.07.010.
  3. Mir MA (editor). The fundamentals of hypersensitivities and allergies. New York: Nova Science Publishers; 2020. p. 248. doi: 10.52305/KFXT3254.
  4. Gülsen A, Wedi B, Jappe U. Hypersensitivity reactions to biologics (part II): Classifications and current diagnostic and treatment approaches. Allergo Journal International 2020; 29(5): 139–154. doi: 10.1007/s40629-020-00127-5.
  5. Basu S, Banik BK. Autoimmune disease: A major challenge for effective treatment. Immunology: Current Research 2017; 1(1): 103.
  6. Yawalkar N. Drug hypersensitivity. Acta Clinica Belgica 2009; 64(6): 529–533. doi: 10.1179/acb.2009.090.
  7. Mahdani FY, Parmadiati AE, Ernawati DS, et al. Citrus limon peel essential oil-induced type iv hypersensitivity reaction. Journal of Experimental Pharmacology 2020; 12: 213–220. doi: 10.2147/JEP.S256139.
  8. Lin BF, Chiang BL, Ma Y, et al. Traditional herbal medicine and allergic asthma. Evidence-Based Complementary and Alternative Medicine 2015; 2015. doi: 10.1155/2015/510989.
  9. Valenta R, Campana R, Focke-Tejkl M, Niederberger V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. Journal of Allergy and Clinical Immunology 2016; 137(2): 351–357. doi: 10.1016/j.jaci.2015.12.1299.
  10. Fujita H, Soyka MB, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy. Clinical and Translational Allergy 2012; 2: 2. doi: 10.1186/2045-7022-2-2.
  11. Senti G, Kündig TM. Novel delivery routes for allergy immunotherapy: Intralymphatic, epicutaneous, and intradermal. Immunology and Allergy Clinics 2016; 36(1): 25–37. doi: 10.1016/j.iac.2015.08.006.
  12. Freiberger SN, Zehnder M, Gafvelin G, et al. IgG4 but no IgG1 antibody production after intralymphatic immunotherapy with recombinant MAT-Feld1 in human. Allergy: European Journal of Allergy and Clinical Immunology 2016; 71(9): 1366–1370. doi: 10.1111/all.12946.
  13. Senti G, Crameri R, Kuster D, et al. Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. Journal of Allergy and Clinical Immunology 2012; 129(5): 1290–1296. doi: 10.1016/j.jaci.2012.02.026.
  14. Senti G, Freiburghaus AU, Larenas-Linnemann D, et al. Intralymphatic immunotherapy: Update and unmet needs. International Archives of Allergy and Immunology 2019; 178(2): 141–149. doi: 10.1159/000493647.
  15. Kim ST, Park SH, Lee SM, Lee SP. Allergen-specific intralymphatic immunotherapy in human and animal studies. Asia Pacific Allergy 2017; 7(3): 131–137. doi: 10.5415/apallergy.2017.7.3.131.
  16. Dhami S, Nurmatov U, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: A systematic review and meta-analysis. Allergy: European Journal of Allergy and Clinical Immunology 2017; 72(11): 1597–1631. doi: 10.1111/all.13201.
  17. Durham SR, Creticos PS, Nelson HS, et al. Treatment effect of sublingual immunotherapy tablets and pharmacotherapies for seasonal and perennial allergic rhinitis: Pooled analyses. Journal of Allergy and Clinical Immunology 2016; 138(4): 1081–1088.e4. doi: 10.1016/j.jaci.2016.04.061.
  18. Trivedi A, Katelaris C. Presentation, diagnosis, and the role of subcutaneous and sublingual immunotherapy in the management of ocular allergy. Clinical and Experimental Optometry 2021; 104(3): 334–349. doi: 10.1111/cxo.13129.
  19. Nolte H, Bernstein DI, Nelson HS, et al. Efficacy of house dust mite sublingual immunotherapy tablet in North American adolescents and adults in a randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology 2016; 138(6): 1631–1638. doi: 10.1016/j.jaci.2016.06.044.
  20. Bernstein DI, Bardelas JA, Svanholm Fogh B, et al. A practical guide to the sublingual immunotherapy tablet adverse event profile: Implications for clinical practice. Postgraduate Medicine 2017; 129(6): 590–597. doi: 10.1080/00325481.2017.1302306.
  21. Tsabouri S, Mavroudi A, Feketea G, Guibas GV. Subcutaneous and sublingual immunotherapy in allergic asthma in children. Frontiers in Pediatrics 2017; 5: 82. doi: 10.3389/fped.2017.00082.
  22. Jutel M, Agache I, Bonini S, et al. International consensus on allergen immunotherapy II: Mechanisms, standardization, and pharmacoeconomics. Journal of Allergy and Clinical Immunology 2016; 137(2): 358–368. doi: 10.1016/j.jaci.2015.12.1300.
  23. Wise SK, Lin SY, Toskala E, et al. International consensus statement on allergy and rhinology: Allergic rhinitis. International Forum of Allergy & Rhinology 2018; 8(2): 108–352. doi: 10.1002/alr.22073.
  24. Sánchez-Borges M, Bernstein DI, Calabria C. Subcutaneous immunotherapy safety: Incidence per surveys and risk factors. Immunology and Allergy Clinics 2020; 40(1): 25–39. doi: 10.1016/j.iac.2019.09.001.
  25. Pajno GB, Fernandez-Rivas M, Arasi S, et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy: European Journal of Allergy and Clinical Immunology 2018; 73(4): 799–815. doi: 10.1111/all.13319.
  26. Lawrence MG, Steinke JW, Borish L. Basic science for the clinician: Mechanisms of sublingual and subcutaneous immunotherapy. Annals of Allergy, Asthma and Immunology 2016; 117(2): 138–142. doi: 10.1016/j.anai.2016.06.027.
  27. Dorofeeva Y, Shilovskiy I, Tulaeva I, et al. Past, present, and future of allergen immunotherapy vaccines. Allergy: European Journal of Allergy and Clinical Immunology 2021; 76(1): 131–149. doi: 10.1111/all.14300.
  28. Kim EH, Burks AW. Food allergy immunotherapy: Oral immunotherapy and epicutaneous immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology 2020; 75(6): 1337–1346. doi: 10.1111/all.14220.
  29. Eiwegger T, Anagnostou K, Arasi S, et al. Conflicting verdicts on peanut oral immunotherapy from the Institute for Clinical and Economic Review and US Food and Drug Administration Advisory Committee: Where do we go from here? Journal of Allergy and Clinical Immunology 2020; 145(4): 1153–1156. doi: 10.1016/j.jaci.2019.10.021.
  30. Chu DK, Wood RA, French S, et al. Oral immunotherapy for peanut allergy (PACE): A systematic review and meta-analysis of efficacy and safety. The Lancet 2019; 393(10187): 2222–2232. doi: 10.1016/S0140-6736(19)30420-9.
  31. Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: Focus on nanoparticle medicine. Clinical and Experimental Allergy 2016; 46(8): 1033–1042. doi: 10.1111/cea.12771.
  32. Flemming A. Autoimmunity: Nanoparticles engineered for antigen-specific immunotherapy. Nature Reviews Immunology 2016; 15(4): 233. doi: 10.1038/nri.2016.39.
  33. Gamazo C, Gastaminza G, Ferrer M, et al. Nanoparticle based-immunotherapy against allergy. Immunotherapy 2014; 6(7): 885–897. doi: 10.2217/imt.14.63.
  34. Alsaleh NB, Brown JM. Engineered nanomaterials and type I allergic hypersensitivity reactions. Frontiers in Immunology 2020; 11: 222. doi: 10.3389/fimmu.2020.00222.
  35. Di Felice G, Colombo P. Nanoparticle-allergen complexes for allergen immunotherapy. International Journal of Nanomedicine 2017; 12: 4493–4504. doi: 10.2147/IJN.S134630.
  36. Paris JL, de la Torre P, Flores AI. New therapeutic approaches for allergy: A review of cell therapy and bio- or nano-material-based strategies. Pharmaceutics 2021; 13(12): 2149. doi: 10.3390/pharmaceutics13122149.
  37. Pohlit H, Frey H, Saloga J. Could allergen-specific immunotherapy benefit from the use of nanocarriers? Nanomedicine 2016; 11(11): 1329–1331. doi: 10.2217/nnm-2016-0111.
  38. Dacoba TG, Olivera A, Torres D, et al. Modulating the immune system through nanotechnology. Seminars in Immunology 2017; 34: 78–102. doi: 10.1016/j.smim.2017.09.007.
  39. Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Frontiers in Pharmacology 2016; 7: 185. doi: 10.3389/fphar.2016.00185.
  40. Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy 2016; 10: 483–507. doi: 10.2147/DDDT.S99651.
  41. Landriscina A, Rosen J, Friedman AJ. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine 2015; 10(10): 1609–1619. doi: 10.2217/nnm.15.7.
  42. Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of protamine in nanopharmaceuticals—A review. Nanomaterials 2021; 11(6): 1508. doi: 10.3390/nano11061508.
  43. Scheiblhofer S, Machado Y, Feinle A, et al. Potential of nanoparticles for allergen-specific immunotherapy–Use of silica nanoparticles as vaccination platform. Expert Opinion on Drug Delivery 2016; 13(12): 1777–1788. doi: 10.1080/17425247.2016.1203898.
  44. Bernasconi V, Norling K, Bally M, et al. Mucosal vaccine development based on liposome technology. Journal of Immunology Research 2016; 2016: 5482087. doi: 10.1155/2016/5482087.
  45. Kratzer B, Hofer S, Zabel M, et al. All the small things: How virus-like particles and liposomes modulate allergic immune responses. European Journal of Immunology 2020; 50(1): 17–32. doi: 10.1002/eji.201847810.
  46. Linhart B, Valenta R. Vaccines for allergy. Current Opinion in Immunology 2012; 24(3): 354–360. doi: 10.1016/j.coi.2012.03.006.
  47. Schmetterer KG, Haiderer D, Leb-Reichl VM, et al. Bet v 1-specific T-cell receptor/forkhead box protein 3 transgenic T cells suppress Bet v 1-specific T-cell effector function in an activation-dependent manner. Journal of Allergy and Clinical Immunology 2011; 127(1): 238–245. doi: 10.1016/j.jaci.2010.10.023.
  48. Chen KW, Focke-Tejkl M, Blatt K, et al. Carrier-bound nonallergenic Der p 2 peptides induce IgG antibodies blocking allergen-induced basophil activation in allergic patients. Allergy: European Journal of Allergy and Clinical Immunology 2012; 67(5): 609–621. doi: 10.1111/j.1398-9995.2012.02794.x.
  49. Cox L. Allergen immunotherapy: Immunomodulatory treatment for allergic diseases. Expert Review of Clinical Immunology 2006; 2(4): 533–546. doi: 10.1586/1744666X.2.4.533.
  50. Zhernov Y, Curin M, Khaitov M, et al. Recombinant allergens for immunotherapy: State of the art. Current Opinion in Allergy and Clinical Immunology 2019; 19(4): 402–414. doi: 10.1097/ACI.0000000000000536.
  51. Marth K, Focke-Tejkl M, Lupinek C, et al. Allergen peptides, recombinant allergens and hypoallergens for allergen-specific immunotherapy. Current Treatment Options in Allergy 2014; 1: 91–106. doi: 10.1007/s40521-013-0006-5.
  52. Jutel M, Solarewicz-Madejek K, Smolinska S. Recombinant allergens: The present and the future. Human Vaccines & Immunotherapeutics 2012; 8(10): 1534–1543. doi: 10.4161/hv.22064.
  53. Curin M, Khaitov M, Karaulov A, et al. Next-generation of allergen-specific immunotherapies: Molecular approaches. Current Allergy and Asthma Reports 2018; 18(7): 39. doi: 10.1007/s11882-018-0790-x.
  54. Akinfenwa O, Rodríguez-Domínguez A, Vrtala S, et al. Novel vaccines for allergen-specific immunotherapy. Current Opinion in Allergy and Clinical Immunology 2021; 21(1): 86–99. doi: 10.1097/ACI.0000000000000706.
  55. Campana R, Marth K, Zieglmayer P, et al. Vaccination of nonallergic individuals with recombinant hypoallergenic fragments of birch pollen allergen Bet v 1: Safety, effects, and mechanisms. Journal of Allergy and Clinical Immunology 2019; 143(3): 1258–1261. doi: 10.1016/j.jaci.2018.11.011.
  56. Larsen JM, Bang-Berthelsen CH, Qvortrup K, et al. Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Critical Reviews in Biotechnology 2020; 40(6): 881–894. doi: 10.1080/07388551.2020.1772194.
  57. Cromwell O, Häfner D, Nandy A. Recombinant allergens for specific immunotherapy. Journal of Allergy and Clinical Immunology 2011; 127(4): 865–872. doi: 10.1016/j.jaci.2011.01.047.
  58. Eckl-Dorna J, Weber M, Stanek V, et al. Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG4 response. EBioMedicine 2019; 50: 421–432. doi: 10.1016/j.ebiom.2019.11.006.
  59. Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, et al. Allergic rhinitis: What do we know about allergen-specific immunotherapy? Frontiers in Allergy 2021; 2: 747323. doi: 10.3389/falgy.2021.747323.
  60. Worm M. SPIREs: A new horizon for allergic disease treatment? Expert Review of Clinical Immunology 2015; 11(11): 1173–1175. doi: 10.1586/1744666X.2015.1066673.
  61. Cavkaytar O, Akdis CA, Akdis M. Modulation of immune responses by immunotherapy in allergic diseases. Current Opinion in Pharmacology 2014; 17(1): 30–37. Doi: 10.1016/j.coph.2014.07.003.
  62. O’Hehir RE, Prickett SR, Rolland JM. T cell epitope peptide therapy for allergic diseases. Current Allergy and Asthma Reports 2016; 16(2): 1–9. doi: 10.1007/s11882-015-0587-0.
  63. Creticos PS. Advances in synthetic peptide immuno-regulatory epitopes. World Allergy Organization Journal 2014; 7: 30. doi: 10.1186/1939-4551-7-30.
  64. Incorvaia C, Montagni M, Ridolo E. The efficiency of peptide immunotherapy for respiratory allergy. Expert Review of Clinical Pharmacology 2016; 9(6): 831–837. doi: 10.1586/17512433.2016.1157017.
  65. Ellis AK, Frankish CW, Armstrong K, et al. Treatment with synthetic peptide immuno-regulatory epitopes derived from grass allergens leads to a substantial reduction in grass allergy symptoms in the environmental exposure unit. Journal of Allergy and Clinical Immunology 2014; 133(2): AB290. doi: 10.1016/j.jaci.2013.12.1024.
  66. Prickett SR, Rolland JM, O’Hehir RE. Immunoregulatory T cell epitope peptides: The new frontier in allergy therapy. Clinical and Experimental Allergy 2015; 45(6): 1015–1026. doi: 10.1111/cea.12554.
  67. Singer BD, King LS, D’Alessio FR. Regulatory T cells as immunotherapy. Frontiers inImmunology 2014; 5: 46. doi: 10.3389/fimmu.2014.00046.
  68. Kitaoka M, Naritomi A, Kawabe Y, et al. Transcutaneous pollinosis immunotherapy using a solid-in-oil nanodispersion system carrying T cell epitope peptide and R848. Bioengineering & Translational Medicine 2017; 2(1): 102–108. doi: 10.1002/btm2.10048.
  69. Wraith DC. Adaptive T cell tuning in immune regulation and immunotherapy of autoimmune diseases. Immunology Letters 2022; 244: 12–18. doi: 10.1016/j.imlet.2022.02.007.
  70. Simms E, Syed I, Rudulier C, Larché M. Peptide immunotherapy; short but long lasting? Current Treatment Options in Allergy 2015; 2(1): 64–71. doi: 10.1007/s40521-014-0043-8.
  71. Calzada D, Cremades-Jimeno L, López-Ramos M, Cárdaba B. Peptide allergen immunotherapy: A new perspective in olive-pollen allergy. Pharmaceutics 2021; 13(7): 1007. doi: 10.3390/pharmaceutics13071007.
  72. Shepard ER, Wegner A, Hill EV, et al. The mechanism of action of antigen processing independent T cell epitopes designed for immunotherapy of autoimmune diseases. Frontiers in Immunology 2021; 12: 654201. doi: 10.3389/fimmu.2021.654201.
  73. Anzaghe M, Schülke S, Scheurer S. Virus-like particles as carrier systems to enhance immunomodulation in allergen immunotherapy. Current Allergy and Asthma Reports 2018; 18: 71. doi: 10.1007/s11882-018-0827-1.
  74. Gao Y, Wijewardhana C, Mann JFS. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Frontiers in Immunology 2018; 9: 345. doi: 10.3389/fimmu.2018.00345.
  75. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Seminars in Immunology 2017; 34: 123–132. doi: 10.1016/j.smim.2017.08.014.
  76. Mohsen MO, Gomes AC, Vogel M, Bachmann MF. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines (Basel) 2018; 6(3): 37. doi: 10.3390/vaccines6030037.
  77. Engeroff P, Bachmann MF. The 5th virus-like particle and nano-particle vaccines (VLPNPV) conference. Expert Review of Vaccines 2019; 18(1): 1–3. doi: 10.1080/14760584.2019.1557522.
  78. Klimek L, Kündig T, Kramer MF, et al. Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo Journal International 2018; 27(8): 245–255. doi: 10.1007/s40629-018-0074-y.
  79. Mohsen MO, Augusto G, Bachmann MF. The 3Ds in virus-like particle based-vaccines: “Design, Delivery and Dynamics”. Immunological Reviews 2020; 296(1): 155–168. doi: 10.1111/imr.12863.
  80. Gomes AC, Roesti ES, El-Turabi A, Bachmann MF. Type of RNA packed in VLPs impacts IgG class switching—Implications for an influenza vaccine design. Vaccines (Basel) 2019; 7(2): 47. doi: 10.3390/vaccines7020047.
  81. Storni F, Zeltins A, Balke I, et al. Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. Journal of Allergy and Clinical Immunology 2020; 145(4): 1240–1253.e3. doi: 10.1016/j.jaci.2019.12.007.
  82. Schwarz B, Douglas T. Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2015; 7(5): 722–735. doi: 10.1002/wnan.1336.
  83. Engeroff P, Caviezel F, Storni F, et al. Allergens displayed on virus-like particles are highly immunogenic but fail to activate human mast cells. Allergy: European Journal of Allergy and Clinical Immunology 2018; 73(2): 341–349. doi: 10.1111/all.13268.
  84. Pazos-Castro D, Margain C, Gonzalez-Klein Z, et al. Suitability of potyviral recombinant virus-like particles bearing a complete food allergen for immunotherapy vaccines. Frontiers in Immunology 2022; 13: 986823. doi: 10.3389/fimmu.2022.986823.
  85. Pechsrichuang P, Namwongnao S, Jacquet A. Bioengineering of virus-like particles for the prevention or treatment of allergic diseases. Allergy, Asthma & Immunology Research 2021; 13(1): 23–41. doi: 10.4168/aair.2021.13.1.23.
  86. Pavón-Romero GF, Parra-Vargas MI, Ramírez-Jiménez F, et al. Allergen immunotherapy: Current and future trends. Cells 2022; 11(2): 212. doi: 10.3390/cells11020212.
  87. Vinay TN, Park CS, Kim HY, Jung SJ. Toxicity and dose determination of quillaja saponin, aluminum hydroxide and squalene in olive flounder (Paralichthys olivaceus). Veterinary Immunology and Immunopathology 2014; 158(1–2): 73–85. doi: 10.1016/j.vetimm.2013.03.007.
  88. Pechsrichuang P, Jacquet A. Molecular approaches to allergen-specific immunotherapy: Are we so far from clinical implementation? Clinical and Experimental Allergy 2020; 50(5): 543–557. doi: 10.1111/cea.13588.
  89. Johnson L, Duschl A, Himly M. Nanotechnology-based vaccines for allergen-specific immunotherapy: Potentials and challenges of conventional and novel adjuvants under research. Vaccines (Basel) 2020; 8(2): 237. doi: 10.3390/vaccines8020237.
  90. Shardlow E, Mold M, Exley C. Unraveling the enigma: Elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. Allergy, Asthma and Clinical Immunology 2018; 14(1): 80. doi: 10.1186/s13223-018-0305-2.
  91. Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-like receptor agonists as adjuvants for allergen immunotherapy. Frontiers in Immunology 2020; 11: 599083. doi: 10.3389/fimmu.2020.599083.
  92. Jensen-Jarolim E. Aluminium in allergies and allergen immunotherapy. World Allergy Organization Journal 2015; 8(1): 7. doi: 10.1186/s40413-015-0060-5.
  93. Jensen-Jarolim E, Bachmann MF, Bonini S, et al. State-of-the-art in marketed adjuvants and formulations in allergen immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy: European Journal of Allergy and Clinical Immunology 2020; 75(4): 746–760. doi: 10.1111/all.14134.
  94. Masson JD, Thibaudon M, Bélec L, Crépeaux G. Calcium phosphate: A substitute for aluminum adjuvants? Expert Review of Vaccines 2017; 16(3): 289–299. doi: 10.1080/14760584.2017.1244484.
  95. Heath MD, Mohsen MO, De Kam PJ, et al. Shaping modern vaccines: Adjuvant systems using MicroCrystalline Tyrosine (MCT®). Frontiers in Immunology 2020; 11: 594911. doi: 10.3389/fimmu.2020.594911.
  96. Montamat G, Leonard C, Poli A, et al. CpG adjuvant in allergen-specific immunotherapy: Finding the sweet spot for the induction of immune tolerance. Frontiers in Immunology 2021; 12: 590054. doi: 10.3389/fimmu.2021.590054.
  97. Manangeeswaran M, Lewkowicz AP, Israely T, et al. CpG oligonucleotides protect mice from alphavirus encephalitis: Role of NK cells, interferons, and TNF. Frontiers in Immunology 2020; 11: 237. doi: 10.3389/fimmu.2020.00237.
  98. Linton S, Burrows AG, Hossenbaccus L, Ellis AK. Future of allergic rhinitis management. Annals of Allergy, Asthma and Immunology 2021; 127(2): 183–190. doi: 10.1016/j.anai.2021.04.029.
  99. Carpio-Escalona LV, González-de-Olano D. Use of the Internet by patients attending allergy clinics and its potential as a tool that better meets patients’ needs. The Journal of Allergy and Clinical Immunology: In Practice 2018; 6(3): 1064–1066. doi: 10.1016/j.jaip.2017.10.034.
  100. Phadke NA, Wolfson AR, Mancini C, et al. Electronic consultations in allergy/immunology. The Journal of Allergy and Clinical Immunology: In Practice 2019; 7(8): 2594–2602. doi: 10.1016/j.jaip.2019.05.039.
  101. Bajowala SS, Shih J, Varshney P, Elliott T. The future of telehealth for allergic disease. The Journal of Allergy and Clinical Immunology: In Practice 2022; 10(10): 2514–2523. doi: 10.1016/j.jaip.2022.08.022.
  102. Portnoy JM, Pandya A, Waller M, Elliott T. Telemedicine and emerging technologies for health care in allergy/immunology. Journal of Allergy and Clinical Immunology 2020; 145(2): 445–454. doi: 10.1016/j.jaci.2019.12.903.
  103. Portnoy J, Waller M, Elliott T. Telemedicine in the era of COVID-19. The Journal of Allergy and Clinical Immunology: In Practice 2020; 8(5): 1489–1491. doi: 10.1016/j.jaip.2020.03.008.
  104. Cruz-Correia R, Ferreira D, Bacelar G, et al. Personalised medicine challenges: Quality of data. International Journal of Data Science and Analytics 2018; 6(3): 251–259. doi: 10.1007/s41060-018-0127-9.
  105. The Lancet Respiratory Medicine. Personalised medicine for asthma in a post-pandemic world. The Lancet. Respiratory Medicine 2021; 9(1): 1. doi: 10.1016/S2213-2600(20)30582-8.
  106. Brunmair J, Bileck A, Stimpfl T, et al. Metabo-tip: A metabolomics platform for lifestyle monitoring supporting the development of novel strategies in predictive, preventive and personalised medicine. EPMA Journal 2021; 12(2): 141–153. doi: 10.1007/s13167-021-00241-6.
  107. Čelakovská J, Bukač J, Vaňková R, et al. Sensitisation to molecular components in patients with atopic dermatitis, relation to asthma bronchiale and allergic rhinitis. Food and Agricultural Immunology 2020; 31(1): 600–629. doi: 10.1080/09540105.2020.1747406.
  108. Hesse L, Oude Elberink JNG, van Oosterhout AJM, Nawijn MC. Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. Pharmacology & Therapeutics 2022; 237: 108115. doi: 10.1016/j.pharmthera.2022.108115.