The Relationship of Vitamin D and IL-17 Levels with Disease Severity in Pediatric Tuberculosis Patients-Scilight

Trends in Immunotherapy

Article

The Relationship of Vitamin D and IL-17 Levels with Disease Severity in Pediatric Tuberculosis Patients

Downloads

Olivianto, E., Mustofa Aidid, & Iskandar, A. (2025). The Relationship of Vitamin D and IL-17 Levels with Disease Severity in Pediatric Tuberculosis Patients. Trends in Immunotherapy, 9(2), 60–72. https://doi.org/10.54963/ti.v9i2.1115

Authors

  • Ery Olivianto

    Department of Child Health, Faculty of Medicine, Universitas Brawijaya‑Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
  • Mustofa Aidid

    Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya‑Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
  • Agustin Iskandar

    Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya‑Dr. Saiful Anwar Hospital, Malang 65112, Indonesia

Tuberculosis (TB) remains a significant global health burden, particularly in children, where immune responses play a crucial role in disease progression. The objective of this research was to analyze the relationship of vitamin D and IL-17 levels with the severity of pediatric TB. This observational analytic study was conducted at Dr. Saiful Anwar Hospital, Malang, involving 33 pediatric patients diagnosed with TB, divided into mild (n = 8), moderate (n = 18) and severe (n = 7) groups. Severity was determined using the score developed in this study. Vitamin D levels were measured using the Cobas c501 analyzer, and IL-17 levels were measured using the Human IL-17 ELISA Kit. While Vitamin D level was significantly lower in microbiologically confirmed patients (p = 0.038), it was not significantly different among severity groups (p = 0.799). Meanwhile, IL-17 levels were significantly higher in patients with more severe respiratory distress (p = 0.01), although the difference between severity groups was not statistically significant (p = 0.966). Furthermore, there was no correlation between vitamin D levels and IL-17 levels (r = 0.178, p = 0.322). These findings indicate the need for further research to explore vitamin D supplementation as an adjunctive therapy and to evaluate IL-17 as a biomarker for disease activity.

Keywords:

Pediatric TB; Vitamin D Deficiency; Interleukin-17; TB Severity; Biomarkers; Immune Modulation

References

  1. World Health Organization. Global Tuberculosis Report 2024. World Health Organization: Geneva, Switzerland, 2024.
  2. World Health Organization. TB Incidence. World Health Organization: Geneva, Switzerland, 2024. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024/tb-disease-burden/1-1-tb-incidence (cited 10 November 2024).
  3. Maphalle, L.N.F.; Michniak-Kohn, B.B.; Ogunrombi, M.O.; et al. Pediatric tuberculosis management: A global challenge or breakthrough? Children 2022, 9, 1120. DOI: https://doi.org/10.3390/children9081120
  4. Carvalho, A.C.C.; Cardoso, C.A.A.; Martire, T.M.; et al. Epidemiological aspects, clinical manifestations, and prevention of pediatric tuberculosis from the perspective of the End TB Strategy. J. Bras. Pneumol. 2018, 44, 134–144. DOI: https://doi.org/10.1590/s1806-37562017000000461
  5. World Health Organization. WHO Operational Handbook on Tuberculosis. Module 5: Management of Tuberculosis in Children and Adolescents. World Health Organization: Geneva, Switzerland, 2022.
  6. Moore, B.K.; Graham, S.M.; Nandakumar, S.; et al. Pediatric tuberculosis: A review of evidence-based best practices for clinicians and health care providers. Pathogens 2024, 13, 467. DOI: https://doi.org/10.3390/pathogens13060467
  7. Palmer, M.; Seddon, J.A.; Goussard, P.; et al. Diagnostic CXR Atlas for Tuberculosis in Children: A Guide to Chest X-Ray Interpretation, 2nd ed.; International Union Against Tuberculosis and Lung Disease (The Union): Paris, France, 2022.
  8. Moule, M.G.; Cirillo, J.D. Mycobacterium tuberculosis dissemination plays a critical role in pathogenesis. Front. Cell Infect. Microbiol. 2020, 10, 65. DOI: https://doi.org/10.3389/fcimb.2020.00065
  9. Lyadova, I.V.; Panteleev, A.V. Th1 and Th17 cells in tuberculosis: protection, pathology, and biomarkers. Mediators Inflamm. 2015, 2015, 854507. DOI: https://doi.org/10.1155/2015/854507
  10. Coulter, F.; Parrish, A.; Manning, D.; et al. IL-17 production from T helper 17, mucosal-associated invariant T, and γδ cells in tuberculosis infection and disease. Front. Immunol. 2017, 8, 1252. DOI: https://doi.org/10.3389/fimmu.2017.01252
  11. Luo, J.; Zhang, M.; Yan, B.; et al. Imbalance of Th17 and Treg in peripheral blood mononuclear cells of active tuberculosis patients. Braz. J. Infect. Dis. 2017, 21, 155–161. DOI: https://doi.org/10.1016/j.bjid.2016.10.011
  12. Papagni, R.; Pellegrino, C.; Di Gennaro, F.; et al. Impact of vitamin D in prophylaxis and treatment in tuberculosis patients. Int. J. Mol. Sci. 2022, 23, 3860. DOI: https://doi.org/10.3390/ijms23073860
  13. Al-Jaberi, F.A.H.; Crone, C.G.; Lindenstrøm, T.; et al. Reduced vitamin D-induced cathelicidin production and killing of Mycobacterium tuberculosis in macrophages from a patient with a non-functional vitamin D receptor: A case report. Front. Immunol. 2022, 13, 1038960. DOI: https://doi.org/10.3389/fimmu.2022.1038960
  14. Junaid, K.; Rehman, A. Impact of vitamin D on infectious disease-tuberculosis-a review. Clin. Nutr. Exp. 2019, 25, 1–10. DOI: https://doi.org/10.1016/j.yclnex.2019.02.003
  15. Buonsenso, D.; Pata, D.; Colonna, A.T.; et al. Vitamin D and tuberculosis in children: A role in the prevention or treatment of the disease? Monaldi Arch. Chest Dis. 2022, 92, 2112. DOI: https://doi.org/10.4081/monaldi.2022.2112
  16. Ganmaa, D.; Uyanga, B.; Zhou, X.; et al. Vitamin D supplements for prevention of tuberculosis infection and disease. N. Engl. J. Med. 2020, 383, 359–368. DOI: https://doi.org/10.1056/NEJMoa1915176
  17. Ganmaa, D.; Munkhzul, B.; Fawzi, W.; et al. High-dose vitamin D₃ during tuberculosis treatment in Mongolia. A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2017, 196, 628–637. DOI: https://doi.org/10.1164/rccm.201705-0936OC
  18. Roya-Pabon, C.L.; Perez-Velez, C.M. Tuberculosis exposure, infection and disease in children: a systematic diagnostic approach. Pneumonia 2016, 8, 23. DOI: https://doi.org/10.1186/s41479-016-0023-9
  19. Sarkar, K.; Kashyap, B.; Lnu, S.; et al. Utility of a clinical scoring system (Bandim TB Score and Karnofsky Performance Score) to assess mycobacterial burden in terms of cartridge-based nucleic acid amplification test (CBNAAT) cycle threshold values among pulmonary TB patients. Cureus 2023, 15, e50976. DOI: https://doi.org/10.7759/cureus.50976
  20. Awang, H.; Husain, N.R.N.; Abdullah, H. Chest radiographic findings and clinical determinants for severe pulmonary tuberculosis among children and adolescents in Malaysia. Russ. Open Med. J. 2019, 8, e0210. DOI: https://doi.org/10.15275/rusomj.2019.0210
  21. Chabala, C.; Roucher, C.; Ton Nu Nguyet, M.H.; et al. Development of tuberculosis treatment decision algorithms in children below 5 years hospitalised with severe acute malnutrition in Zambia and Uganda: A prospective diagnostic cohort study. EClinicalMedicine 2024, 73, 102688. DOI: https://doi.org/10.1016/j.eclinm.2024.102688
  22. Ockenga, J.; Fuhse, K.; Chatterjee, S.; et al. Tuberculosis and malnutrition: The European perspective. Clin. Nutr. 2023, 42, 486–492. DOI: https://doi.org/10.1016/j.clnu.2023.01.016
  23. Sinha, P.; Davis, J.; Saag, L.; et al. Undernutrition and tuberculosis: Public health implications. J. Infect. Dis. 2019, 219, 1356–1363. DOI: https://doi.org/10.1093/infdis/jiy675
  24. Vonasek, B.J.; Radtke, K.K.; Vaz, P.; et al. Tuberculosis in children with severe acute malnutrition. Expert Rev. Respir. Med. 2022, 16, 273–284. DOI: https://doi.org/10.1080/17476348.2022.2043747
  25. Acen, E.L.; Biraro, I.A.; Worodria, W.; et al. Impact of vitamin D status and cathelicidin antimicrobial peptide on adults with active pulmonary TB globally: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0252762. DOI: https://doi.org/10.1371/journal.pone.0252762
  26. Zittermann, A.; Pilz, S.; Hoffmann, H.; et al. Vitamin D and airway infections: a European perspective. Eur. J. Med. Res. 2016, 21, 14. DOI: https://doi.org/10.1186/s40001-016-0208-y
  27. Gou, X.; Pan, L.; Tang, F.; et al. The association between vitamin D status and tuberculosis in children: A meta-analysis. Medicine (Baltimore) 2018, 97, e12179. DOI: https://doi.org/10.1097/md.0000000000012179
  28. Zeng, J.; Wu, G.; Yang, W.; et al. A serum vitamin D level <25nmol/l pose high tuberculosis risk: a meta-analysis. PLoS ONE 2015, 10, e0126014. DOI: https://doi.org/10.1371/journal.pone.0126014
  29. Farazi, A.; Didgar, F.; Sarafraz, A. The effect of vitamin D on clinical outcomes in tuberculosis. Egypt. J. Chest Dis. Tuberc. 2017, 66, 419–423. DOI: https://doi.org/10.1016/j.ejcdt.2017.01.004
  30. Ma, W.-W.; Wang, L.-C.; Zhao, D.-A.; et al. Analysis of T-lymphocyte subsets and risk factors in children with tuberculosis. Tuberculosis 2024, 146, 102496. DOI: https://doi.org/10.1016/j.tube.2024.102496
  31. Jiang, J.; Cao, Z.; Li, B.; et al. Disseminated tuberculosis is associated with impaired T cell immunity mediated by non-canonical NF-κB pathway. J. Infect. 2024, 89, 106231. DOI: https://doi.org/10.1016/j.jinf.2024.106231
  32. Elsafi, S.S.M.S.; Nour, B.M.; Abakar, A.D.; et al. Vitamin D level and it is association with the severity of pulmonary tuberculosis in patients attended to Kosti Teaching Hospital, Sudan. AIMS Microbiol. 2020, 6, 65–74. DOI: https://doi.org/10.3934/microbiol.2020004
  33. Zhang, X.; Zhang, Y.; Yin, Z.; et al. Relationship between vitamin D receptor gene polymorphisms and second acid-fast bacilli smear-positive during treatment for tuberculosis patients. Infect. Genet. Evol. 2022, 103, 105324. DOI: 10.1016/j.meegid.2022.105324
  34. Abohashrh, M.; Ahmad, I.; Alam, M.M.; et al. Assessment of IL-12, mRNA expression, vitamin-D level, and their correlation among the Mycobacterium tuberculosis cases. Saudi J. Biol. Sci. 2022, 29, 992–997. DOI: https://doi.org/10.1016/j.sjbs.2021.10.002
  35. Harishankar, M.; Sampath, P.; Athikesavan, V.; et al. Association of rs7041 and rs4588 polymorphisms of vitamin D binding protein gene in pulmonary tuberculosis. Meta Gene 2020, 26, 100822. DOI: https://doi.org/10.1016/j.mgene.2020.100822
  36. Semita, I.N.; Fatmawati, H.; Munawir, A.; et al. Complete neurological recovery of spinal tuberculosis after spinal surgery and vitamin D supplementary: A case series. Int. J. Surg. Case Rep. 2024, 122, 110053. DOI: https://doi.org/10.1016/j.ijscr.2024.110053
  37. Hassanein, E.G.; Mohamed, E.E.; Baess, A.I.; et al. The role of supplementary vitamin D in treatment course of pulmonary tuberculosis. Egypt. J. Chest Dis. Tuberc. 2016, 65, 629–635. DOI: https://doi.org/10.1016/j.ejcdt.2016.03.004
  38. Ritter, K.; Behrends, J.; Rückerl, D.; et al. High-dose Mycobacterium tuberculosis H37rv infection in IL-17A- and IL-17A/F-deficient mice. Cells 2022, 11, 2875. DOI: https://doi.org/10.3390/cells11182875
  39. Xu, L.; Cui, G.; Jia, H.; et al. Decreased IL-17 during treatment of sputum smear-positive pulmonary tuberculosis due to increased regulatory T cells and IL-10. J. Transl. Med. 2016, 14, 179. DOI: https://doi.org/10.1186/s12967-016-0909-6
  40. Shu, C.-C.; Wu, M.-F.; Wang, J.-Y.; et al. Decreased T helper 17 cells in tuberculosis is associated with increased percentages of programmed death ligand 1, T helper 2 and regulatory T cells. Respir. Res. 2017, 18, 128. DOI: https://doi.org/10.1186/s12931-017-0580-3
  41. Rodríguez-Míguez, Y.; Lozano-Ordaz, V.; Ortiz-Cabrera, A.E.; et al. Effect of IL-17A on the immune response to pulmonary tuberculosis induced by high- and low-virulence strains of Mycobacterium bovis. PLOS ONE 2024, 19, e0307307. DOI: https://doi.org/10.1371/journal.pone.0307307
  42. Mourik, B.C.; Lubberts, E.; de Steenwinkel, J.E.M.; et al. Interactions between type 1 interferons and the Th17 response in tuberculosis: Lessons learned from autoimmune diseases. Front. Immunol. 2017, 8, 294. DOI: https://doi.org/10.3389/fimmu.2017.00294
  43. Kumar, N.P.; Moideen, K.; Banurekha, V.V.; et al. Plasma proinflammatory cytokines are markers of disease severity and bacterial burden in pulmonary tuberculosis. Open Forum Infect. Dis. 2019, 6, ofz257. DOI: https://doi.org/10.1093/ofid/ofz257
  44. Sharma, P.; Sharma, R.D.; Das, M.; et al. Ly6G⁺Granulocytes-derived IL-17 limits protective host responses and promotes tuberculosis pathogenesis. eLife 2024, 13, RP100966. DOI: https://doi.org/10.7554/elife.100966.1
  45. Kim, T.O.; Park, K.J.; Cho, Y.N.; et al. Altered distribution, activation and increased IL-17 production of mucosal-associated invariant T cells in patients with acute respiratory distress syndrome. Thorax 2022, 77, 865–872. DOI: https://doi.org/10.1136/thoraxjnl-2021-217724
  46. Feng, J.-Y.; Ho, L.-I.; Chuang, F.-Y.; et al. Depression and recovery of IL-17A secretion in mitogen responses in patients with active tuberculosis—a prospective observational study. J. Formos Med. Assoc. 2021, 120, 1080–1089. DOI: https://doi.org/10.1016/j.jfma.2020.09.012
  47. Yeh, W.I.; McWilliams, I.L.; Harrington, L.E. IFNγ inhibits Th17 differentiation and function via Tbet-dependent and Tbet-independent mechanisms. J. Neuroimmunol. 2014, 267, 20–27. DOI: https://doi.org/10.1016/j.jneuroim.2013.12.001
  48. Cervantes, J.L.; Oak, E.; Garcia, J.; et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis (Edinb) 2019, 116, S131–S137. DOI: https://doi.org/10.1016/j.tube.2019.04.021
  49. Gough, M.E.; Graviss, E.A.; May, E.E. The dynamic immunomodulatory effects of vitamin D₃ during mycobacterium infection. Innate Immun. 2017, 23, 506–523. DOI: https://doi.org/10.1177/1753425917719143
  50. Corrado, A.; Rotondo, C.; Sanpaolo, E.R.; et al. 1,25OH-vitamin D₃ and IL-17 inhibition modulate pro-fibrotic cytokines production in peripheral blood mononuclear cells of patients with systemic sclerosis. Int. J. Med. Sci. 2022, 19, 867–877. DOI: https://doi.org/10.7150/ijms.70984
  51. Wang, W.; Deng, G.; Zhang, G.; et al. Genetic polymorphism rs8193036 of IL17A is associated with increased susceptibility to pulmonary tuberculosis in Chinese Han population. Cytokine 2020, 127, 154956. DOI: https://doi.org/10.1016/j.cyto.2019.154956
  52. Pollara, G.; Turner, C.T.; Rosenheim, J.; et al. Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease. Sci. Transl. Med. 2021, 13, eabg7673. DOI: https://doi.org/10.1126/scitranslmed.abg7673