Trends in Immunotherapy

Article

Ultra‑Diluted Gelsemium Sempervirens a Known Dna Topoiso‑ merase i (Top i) Inhibitor Exerts Protective Action Against Sars‑Cov‑ 2 Rbd Induced Cytokine Dysregulation

Downloads

Paira, K., Chatterjee, D., Ghosh, S., Goswami, P., & Das, S. (2025). Ultra‑Diluted Gelsemium Sempervirens a Known Dna Topoiso‑ merase i (Top i) Inhibitor Exerts Protective Action Against Sars‑Cov‑ 2 Rbd Induced Cytokine Dysregulation. Trends in Immunotherapy, 9(2), 1–12. https://doi.org/10.54963/ti.v9i2.1020

Authors

  • Krishnendu Paira Genetic Research Unit, Heritage Institute of Technology, Kolkata, West Bengal 700107, India
  • Debasmita Chatterjee Genetic Research Unit, Heritage Institute of Technology, Kolkata, West Bengal 700107, India
  • Sayak Ghosh Ministry of Health and Family Welfare, Department of AYUSH, Government of West Bengal, West Bengal 700091, India
  • Pritam Goswami Department of Repertory, Kharagpur Homeopathic Medical College and Hospital, West Bengal 721301, India
  • Satadal Das
    Genetic Research Unit, Heritage Institute of Technology, Kolkata, West Bengal 700107, India

Gelsemium sempervirens (GS) extract is being used in phytomedicine and homeopathy for its anxiolytic properties but its mechanism of action is yet to be understood. Evidence from rodent models suggests existence of its high sensitivity to the central nervous system even in ultra‑diluted conditions. The diverse effects of its extract and/or its main alkaloids‑gelsemine, sempervirine, and koumine have been shown through different experiments in recent years. Sempervirine intercalates with DNA and inhibits topoisomerase‑I activity, which is thought to be a potential target for restricting viral replication during SARS‑CoV‑2 pathogenesis. Delta SARS‑CoV‑2 spike RBD,
the recombinant protein, was procured from Abclonal Pvt. Ltd. 14th‑day‑old Gallus gallus domesticus embryos were inoculated with RBD protein along with control alcohol in pre‑ and post‑treatment sets and challenged with Gelsemium 6CH, 30CH and 200CH potencies. After 48h, allantoic ϐluids were collected during harvesting and stored at −20 ℃ for the study of different cytokine gene expressions by RT‑PCR (Reverse Transcription Polymerase Chain Reaction). GS at 6CH, 30CH, and 200CH dilutions showed up‑regulation of IFN‑α and IL‑10 gene expressions in all experimental sets. Tendencies of down‑regulation of the genes were seen with TGF‑β1, IL‑1β, and IL‑6 cytokines, with few exceptions. IFN‑β and IL‑1β gene expression changes were relatively mild and mostly inconclusive. All expressions indicate a possible balancing effect between pro‑inϐlammatory and anti‑inϐlammatory cytokine gene expressions by Gelsemium. Ultra‑diluted GS in homeopathic doses can effectively modulate the expression of cytokine genes in SARS‑CoV‑2‑induced cytokine imbalance. Further studies are desired to understand its utility in clinical practice through structured clinical trials.

Keywords:

SARS‑CoV‑2; Spike Protein; Receptor Binding Domain (RBD); Cytokine imbalance; Gelsemium; Home‑ opathy

References

  1. Angell, M., Kassirer, J.P. Alternative medicine—the risks of untested and unregulated remedies. N. Engl. J. Med. 1998, 339, 839–841. DOI: http://dx.doi.org/10.1056/NEJM199809173391210
  2. Chaturvedi, S., Porter, J., Pillai, G.K.G., et al. India and its pluralistic health system–a new philosophy for Universal Health Coverage. Lancet Reg. Health Southeast Asia 2023, 10, 1–6. DOI: http://dx.doi.org/10.1016/j.lansea.2022.100136
  3. World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization: Geneva, Switzerland, 2019.
  4. To, K.L.A., Fok, Y.Y.Y. Homeopathic clinical features of 18 patients in COVID-19 outbreaks in Hong Kong. Homeopathy 2020, 109, 146–162. DOI: http://dx.doi.org/10.1055/s-0040-1710545
  5. Manchanda, R.K., Miglani, A., Gupta, M., et al. Homeopathic remedies in COVID-19: prognostic factor research. Homeopathy 2021, 110, 160–167. DOI: http://dx.doi.org/10.1055/s-0041-1725989
  6. Garland, G. Gelsemium sempervirens. N. Engl. J. Med. 1888, 119, 243–245. DOI: http://dx.doi.org/10.1056/nejm188809131191102
  7. Boericke, W. Materia Medica with repertory. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/hom-11932 (accessed on 20 March 2025).
  8. Bellavite, P., Bonafini, C., Marzotto, M. Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues. J. Ayurveda Integr. Med. 2018, 9, 69–74. DOI: http://dx.doi.org/10.1016/j.jaim.2017.01.010
  9. Jin, G.L., Su, Y.P., Liu, M., et al. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)—A review of their phytochemistry, pharmacology, toxicology and traditional use. J. Ethnopharmacol. 2014, 152, 33–52. DOI: http://dx.doi.org/10.1016/j.jep.2014.01.003
  10. Yuin Ho, J.S., Wing-Yee Mok, B., Campisi, L., et al. Topoisomerase 1 inhibition therapy protects against SARS-CoV-2-induced inflammation and death in animal models. bioRxiv. 2020, 12. DOI: https://doi.org/10.1101/2020.12.01.404483
  11. Zhang, Z., Wang, P., Yuan, W., et al. Steroids, alkaloids, and coumarins from Gelsemium sempervirens. Planta Med. 2008, 74(15), 1818–1822. DOI: http://dx.doi.org/10.1055/s-0028-1088327
  12. Manchanda, R., Koley, M., Saha, S., et al. Patients' Preference for Integrating Homoeopathy Services within the Secondary Health Care Settings in India: The Part 3 (PPIH-3) Study. J. Evid.-Based Complement. Altern. Med. 2017, 22(2), 251–259. DOI: http://dx.doi.org/10.1177/2156587216650116
  13. Masic, I., Miokovic, M., Muhamedagic, B. Evidence based medicine–new approaches and challenges. Acta Inform. Med. 2008, 16(4), 219. DOI: http://dx.doi.org/10.5455/aim.2008.16.219-225
  14. Chatterjee, D., Paira, K., Goswami, P., et al. Ultra diluted arsenic-induced altered cytokine gene expressions in embryonated eggs challenged with Sars-Cov-2 spike protein RBD antigen. Int. J. Pharm. Sci. Res. 2022, 13(10), 4071–4086. DOI: http://dx.doi.org/10.13040/IJPSR.0975-8232.13(10).4071-86
  15. Chatterjee, D., Paira, K., Das, S. Comparative action of alternative medicines Arsenicum Album 30CH and Phosphorus 30CH for balancing cytokines gene expressions in SARS-CoV-2 spike protein induced pathological changes. Bull. Pharm. Sci. Assiut Univ. 2024, 47(1), 321–333. DOI: http://dx.doi.org/10.21608/bfsa.2023.219552.1789
  16. Goswami, P., Chatterjee, D., Ghosh, S., et al. Balanced cytokine upregulation by diluted ethanolic extract of Bryonia alba in Delta SARS-CoV-2 Spike protein RBD-induced pathogenesis in Gallus gallus embryo. Bull. Natl. Res. Cent. 2022, 46, 169. DOI: http://dx.doi.org/10.1186/s42269-022-00856-3
  17. Kogure, N., Nishiya, C., Kitajima, M., et al. Six new indole alkaloids from Gelsemium sempervirens Ait. f. Tetrahedron Lett. 2005, 46, 5857–5861. DOI: http://dx.doi.org/10.1016/j.tetlet.2005.06.136
  18. Kogure, N., Ishii, N., Kitajima, M., et al. Four Novel Gelsenicine-Related Oxindole Alkaloids from the Leaves of Gelsemium e legansBenth. Org. Lett. 2006, 8(14), 3085–3088. DOI: https://doi.org/10.1021/ol061062i
  19. Kitajima, M. Chemical studies on monoterpenoidindole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza. J. Nat. Med. 2007, 61, 14–23. DOI: http://dx.doi.org/10.1007/s11418-006-0101-z
  20. Chen, W., Yang, Y., Wu, S. Determination the content of koumine, gelsemine and humantenmine in Fujian Gelsemium elegant. J. Fujian Univ. TCM 2011, 21, 48–50.
  21. Dutt, V., Thakur, S., Dhar, V.J., et al. The genus Gelsemium: an update. Pharmacogn. Rev. 2010, 4, 185. DOI: http://dx.doi.org/10.4103/0973-7847.70916
  22. Bousta, D., Soulimani, R., Jarmouni, I., et al. Neurotropic, immunological and gastric effects of low doses of Atropa belladonna L., Gelsemium sempervirens L. and Poumon histamine in stressed mice. J. Ethnopharmacol. 2001, 74, 205–215. DOI: http://dx.doi.org/10.1016/s0378-8741(00)00346-9
  23. Gahlot, K., Abid, M., Sharma, A. Pharmacological evaluation of Gelsemium sempervirens roots for CNS depressant activity. Int. J. PharmTech Res. 2012, 3, 693–697.
  24. Magnani, P., Conforti, A., Zanolin, E., et al. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology 2010, 210, 533–545. DOI: http://dx.doi.org/10.1007/s00213-010-1855-2
  25. Xu, Y.K., Liao, S.G., Na, Z., et al. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans. Fitoterapia 2012, 83(6), 1120–1124. DOI: https://doi.org/10.1016/j.fitote.2012.04.023
  26. Dutt, V., Dhar, V.J., Sharma, A. Antianxiety activity of Gelsemium sempervirens. Pharm. Biol. 2010, 48, 1091–1096. DOI: http://dx.doi.org/10.3109/13880200903490521
  27. Bellavite, P., Magnani, P., Zanolin, E., et al. Homeopathic doses of Gelsemium sempervirens improve the behavior of mice in response to novel environments. Evid.-based Complement. Altern. Med. 2011, 362517. DOI: http://dx.doi.org/10.1093/ecam/nep139
  28. Caprasse, M., Houssier, C. Physico-chemical investigation of the mode of binding of the alkaloids 5, 6-dihydroflavopereirine and sempervirine with DNA. Biochimie 1984, 66, 31-41. DOI: http://dx.doi.org/10.1016/0300-9084(84)90189-5
  29. Karki, R., Kanneganti, T.D. The ‘cytokine storm': molecular mechanisms and therapeutic prospects. Trends Immunol. 2021, 42(8), 681–705. DOI: 10.1016/j.it.2021.06.001
  30. Lee, D.W., Santomasso, B.D., Locke, F.L., et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 2019, 25(4), 625–638. DOI: https://doi.org/10.1016/j.bbmt.2018.12.758
  31. Zanza, C., Romenskaya, T., Manetti, A.C., et al. Cytokine storm in COVID-19: immunopathogenesis and therapy. Medicina 2022, 58, 144. DOI: http://dx.doi.org/10.3390/medicina58020144
  32. Walls, A.C., Park, Y.J., Tortorici, M.A., et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. DOI: http://dx.doi.org/10.1016/j.cell.2020.02.058
  33. Letko, M., Marzi, A., Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. DOI: http://dx.doi.org/10.1038/s41564-020-0688-y
  34. Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. DOI: http://dx.doi.org/10.1016/j.cell.2020.02.052
  35. Gui, M., Song, W., Zhou, H., et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017, 27, 119–129. DOI: http://dx.doi.org/10.1038/cr.2016.152
  36. Song, W., Gui, M., Wang, X., et al. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018, 14, e1007236. DOI: http://dx.doi.org/10.1371/journal.ppat.1007236
  37. Kirchdoerfer, R.N., Wang, N., Pallesen, J., et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 2018, 8, 15701. DOI: http://dx.doi.org/10.1038/s41598-018-34171-7
  38. Yuan, Y., Cao, D., Zhang, Y., et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 2017, 8, 15092. DOI: http://dx.doi.org/10.1038/ncomms15092
  39. Tian, X., Li, C., Huang, A., et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 2020, 9, 382–385. DOI: http://dx.doi.org/10.1080/22221751.2020.1729069
  40. Lan, J., Ge, J., Yu, J., et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. DOI: http://dx.doi.org/10.1038/s41586-020-2180-5
  41. Hamming, I., Timens, W., Bulthuis, M.L.C., et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. DOI: http://dx.doi.org/10.1002/path.1570
  42. Chen, L., Li, X., Chen, M., et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020, 116, 1097–1100. DOI: http://dx.doi.org/10.1093/cvr/cvaa078
  43. Ziegler, C.G., Allon, S.J., Nyquist, S.K., et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020, 181, 1016–1035.
  44. Wölfel, R., Corman, V.M., Guggemos, W., et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. DOI: http://dx.doi.org/10.1038/s41586-020-2984-3
  45. Channappanavar, R., Fehr, A.R., Vijay, R., et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016, 19, 181–193. DOI: http://dx.doi.org/10.1016/j.chom.2016.01.007
  46. Huang, C., Wang, Y., Li, X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. DOI: http://dx.doi.org/10.1016/S0140-6736(20)30183-5
  47. Diao, B., Wang, C., Tan, Y., et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. DOI: http://dx.doi.org/10.3389/fimmu.2020.00827
  48. Hermine, O., Mariette, X., Tharaux, P.L., et al. Effect of tocilizumabvs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern. Med. 2021, 181, 32–40. DOI: http://dx.doi.org/10.1001/jamainternmed.2020.6820
  49. Salvarani, C., Dolci, G., Massari, M., et al. Effect of tocilizumabvs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern. Med. 2021, 181, 24–31. DOI: http://dx.doi.org/10.1001/jamainternmed.2020.6615
  50. Ho, J.S.Y., Mok, B.W.Y., Campisi, L., et al. TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell 2021, 184, 2618–2632. DOI: http://dx.doi.org/10.1016/j.cell.2021.03.051
  51. Rialdi, A., Campisi, L., Zhao, N., et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science 2016, 352, aad7993. DOI: http://dx.doi.org/10.1126/science.aad7993
  52. Chakraborty, A.K. Coronavirus Nsp2 protein homologies to the bacterial DNA topoisomerase I and IV suggest Nsp2 protein is a unique RNA topoisomerase with novel target for drug and vaccine development. OSF Preprints. 2020. DOI: https://doi.org/10.31219/osf.io/tc9us