Efficacy and Safety of Roflumilast in Asthma Management: A Systematic Review and Meta-Analysis

ENT Updates

Review

Efficacy and Safety of Roflumilast in Asthma Management: A Systematic Review and Meta-Analysis

Alruwaili, M., Alamer, R. F., Ahmed, R., Alanzi, H., Alsabhan, R., Alhamzani, F., Alrashidi, H., Alanzi, R., Alshammari, E., Alshammari, N., Alrashidi, M., Al-Humian, H., Alsaeed, N., Aljohani, R. F., & Ahmed, R. (2025). Efficacy and Safety of Roflumilast in Asthma Management: A Systematic Review and Meta-Analysis. ENT Updates, 15(4), 20–34. https://doi.org/10.54963/entu.v15i4.1673

Authors

  • Musaad Alruwaili

    Pharmaceutical Care Department, Turaif General Hospital, Northern Borders Health Cluster, Turaif 75311, Saudi Arabia
  • Rakan Fahad Alamer

    Pharmacist, King Salman Specialist Hospital, Hail 55471, Saudi Arabia
  • Raneem Ahmed

    Department of Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
  • Hajar Alanzi

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Rahaf Alsabhan

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Faisal Alhamzani

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Hanadi Alrashidi

    Department of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Ryam Alanzi

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Emtenan Alshammari

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Nada Alshammari

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Mnsorha Alrashidi

    Department of Nursing, PHC Aljmeen, Hail Health Cluster, Hail 55471, Saudi Arabia
  • Hmoud Al-Humian

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Noura Alsaeed

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Rimas Fawaz Aljohani

    Department of Doctor of Pharmacy, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia
  • Ruba Ahmed

    Department of Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia

Received: 30 September 2025; Revised: 8 December 2025; Accepted: 19 December 2025; Published: 29 December 2025

Asthma is a chronic respiratory condition affecting millions globally, causing significant morbidity and economic burden. Despite advances in treatment, many patients experience uncontrolled symptoms and exacerbations, particularly those with corticosteroid resistance or neutrophilic inflammation. Roflumilast, an oral phosphodiesterase-4 inhibitor, may offer additional benefits by targeting inflammatory pathways that are not fully controlled by standard therapy. This systematic review and meta-analysis aimed to assess the efficacy and safety of roflumilast in patients with asthma. A comprehensive literature search was conducted using the PubMed, Scopus, and Web of Science databases from January 2015 to August 2025. We included randomized controlled trials and pooled analyses evaluating roflumilast in patients with asthma. The primary outcome was the mean difference in the forced expiratory volume in one second between the intervention and control groups. Secondary outcomes included risk of exacerbation, symptom control, and adverse events. Six studies met the inclusion criteria, with 2845 participants. Roflumilast showed a modest improvement in forced expiratory volume in one second (Mean difference: +0.04 L; 95% confidence interval: −0.01 to +0.09; heterogeneity = 41%), which was not statistically significant. Exacerbation risk reduction was inconsistent across studies (Risk ratio: 0.96; 95% confidence interval: 0.83–1.12; heterogeneity = 35%). Adverse events, particularly gastrointestinal issues and weight loss, were more frequent with roflumilast, leading to higher rates of discontinuation. Subgroup analysis suggested potential benefits in patients with persistent airway inflammation or corticosteroid resistance, whereas harm was observed in obese patients. The limited number of trials and heterogeneity among studies restricted the conclusiveness of our findings.

Keywords:

Asthma Inflammation Corticosteroids Roflumilast Lung Function Exacerbations

References

  1. Brightling, C.E.; Bradding, P.; Symon, F.A.; et al. Mast-Cell Infiltration of Airway Smooth Muscle in Asthma. N. Engl. J. Med. 2002, 346, 1699–1705. DOI: https://doi.org/10.1056/NEJMoa012705
  2. Williams, E.J.; Negewo, N.A.; Baines, K.J. Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. J. Allergy. Clin. Immunol. 2021, 147, 2060–2062. DOI: https://doi.org/10.1016/j.jaci.2021.04.022
  3. Sabatini, F.; Petecchia, L.; Boero, S. A Phosphodiesterase 4 Inhibitor, Roflumilast N-Oxide, Inhibits Human Lung Fibroblast Functions in vitro. Pulm. Pharmacol. Ther. 2010, 23, 283–291. DOI: https://doi.org/10.1016/j.pupt.2010.02.004
  4. Edwards, M.R.; Facchinetti, F.; Civelli, M.; et al. Anti-Inflammatory Effects of the Novel Inhaled Phosphodiesterase Type 4 Inhibitor CHF6001 on Virus-Inducible Cytokines. Pharmacol. Res. Perspect. 2016, 4, e00202. DOI: https://doi.org/10.1002/prp2.202
  5. Fokkens, W.; Reitsma, S. Unified Airway Disease: A Contemporary Review and Introduction. Otolaryngol. Clin. North Am. 2023, 56, 1–10. DOI: https://doi.org/10.1016/j.otc.2022.09.001
  6. Kanda, A.; Kobayashi, Y.; Asako, M.; et al. Regulation of Interaction between the Upper and Lower Airways in United Airway Disease. Med. Sci. 2019, 7, 27. DOI: https://doi.org/10.3390/medsci7020027
  7. Varricchi, G.; Brightling, C.E.; Grainge, C.; et al. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur. Respir. J. 2024, 63, 2301619. DOI: https://doi.org/10.1183/13993003.01619-2023
  8. Al Busaidi, N.; Alweqayyan, A.; Al Zaabi, A.; et al. Gulf Asthma Diagnosis and Management in Adults: Expert Review and Recommendations. Open. Respir. Med. J. 2022, 16, e187430642205230. DOI: https://doi.org/10.2174/18743064-v16-e2205230
  9. Sobieraj, D.M.; Baker, W.L.; Nguyen, E.; et al. Association of Inhaled Corticosteroids and Long-Acting Muscarinic Antagonists with Asthma Control in Patients with Uncontrolled, Persistent Asthma: A Systematic Review and Meta-analysis. JAMA 2018, 319, 1473–1484. DOI: https://doi.org/10.1001/jama.2018.2757
  10. Yaghoubi, M.; Adibi, A.; Safari, A.; et al. The Projected Economic and Health Burden of Uncontrolled Asthma in the United States. Am. J. Respir. Crit. Care Med. 2019, 200, 1102–1112. DOI: https://doi.org/10.1164/rccm.201901-0016OC
  11. Pilette, C.; Canonica, G.W.; Chaudhuri, R.; et al. REALITI-A Study: Real-World Oral Corticosteroid-Sparing Effect of Mepolizumab in Severe Asthma. J. Allergy. Clin. Immunol. Pract. 2022, 10, 2646–2656. DOI: https://doi.org/10.1016/j.jaip.2022.05.042
  12. Vähätalo, I.; Ilmarinen, P.; Tuomisto, L.E.; et al. Inhaled Corticosteroids and Asthma Control in Adult-Onset Asthma: 12-Year Follow-Up Study. Respir. Med. 2018, 137, 70–76. DOI: https://doi.org/10.1016/j.rmed.2018.02.025
  13. Lemanske, R.F.; Mauger, D.T.; Sorkness, C.A.; et al. Step-Up Therapy for Children with Uncontrolled Asthma Receiving Inhaled Corticosteroids. N. Engl. J. Med. 2010, 362, 975–985. DOI: https://doi.org/10.1056/NEJMoa1001278
  14. Price, D.; Musgrave, S.D.; Shepstone, L.; et al. Leukotriene Antagonists as First-Line or Add-On Asthma-Controller Therapy. N. Engl. J. Med. 2011, 364, 1695–1707. DOI: https://doi.org/10.1056/NEJMoa1010846
  15. Strunk, R.C.; Bloomberg, G.R. Omalizumab for Asthma. N. Engl. J. Med. 2006, 354, 2689–2695. DOI: https://doi.org/10.1056/NEJMct055184
  16. Bacharier, L.B.; Maspero, J.F.; Katelaris, C.H.; et al. Dupilumab in Children with Uncontrolled Moderate-to-Severe Asthma. N. Engl. J. Med. 2021, 385, 2230–2240. DOI: https://doi.org/10.1056/NEJMoa2106567
  17. Taleb, A.A.; Badgett, R.G. In Severe, Uncontrolled Asthma, Tezepelumab Reduced Exacerbations and Improved Asthma Control at 1 Year. Ann. Intern. Med. 2021, 174, JC115. DOI: https://doi.org/10.7326/ACPJ202110190-115
  18. Leclerc, O.; Lagente, V.; Planquois, J.M.; et al. Involvement of MMP-12 and Phosphodiesterase Type 4 in Cigarette Smoke-Induced Inflammation in Mice. Eur. Respir. J. 2006, 27, 1102–1109. DOI: https://doi.org/10.1183/09031936.06.00076905
  19. Crespo, A.; Mateus, E.; Torreon, M.; et al. The Percentage of Neutrophils Expressing TLR4 in Induced Sputum Decreases in Non-Eosinophilic Asthma. Eur. Respir. J. 2013, 42. Available online: https://portalrecerca.uab.cat/ca/publications/the-percentage-of-neutrophils-expressing-tlr4-in-induced-sputum-d/
  20. Moretto, N.; Caruso, P.; Bosco, R.; et al. CHF6001 I: A Novel Highly Potent and Selective Phosphodiesterase 4 Inhibitor with Robust Anti-Inflammatory Activity and Suitable for Topical Pulmonary Administration. J. Pharmacol. Exp. Ther. 2015, 352, 559–567. DOI: https://doi.org/10.1124/jpet.114.220541
  21. de Visser, Y.P.; Walther, F.J.; Laghmani, E.H.; et al. Phosphodiesterase-4 Inhibition Attenuates Pulmonary Inflammation in Neonatal Lung Injury. Eur. Respir. J. 2008, 31, 633–644. DOI: https://doi.org/10.1183/09031936.00071307
  22. Criner, G.J.; Jacobs, M.R.; Zhao, H.; et al. Effects of Roflumilast on Rehospitalization and Mortality in Patients. Chronic Obstr Pulm Dis. 2019, 6, 74–85. DOI: https://doi.org/10.15326/jcopdf.6.1.2018.0139
  23. Kim, S.W.; Kim, J.H.; Park, C.K.; et al. Effect of Roflumilast on Airway Remodelling in a Murine Model of Chronic Asthma. Clin. Exp. Allergy 2016, 46, 754–763. DOI: https://doi.org/10.1111/cea.12670
  24. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. DOI: https://doi.org/10.1136/bmj.n71
  25. Meltzer, E.O.; Chervinsky, P.; Busse, W.; et al. Roflumilast for Asthma: Efficacy Findings in Placebo-Controlled Studies. Pulm. Pharmacol. Ther. 2015, 35, S20–S27. DOI: https://doi.org/10.1016/j.pupt.2015.10.006
  26. Bateman, E.D.; Bousquet, J.; Aubier, M.; et al. Roflumilast for Asthma: Efficacy Findings in Non-Placebo-Controlled Comparator and Dosing Studies. Pulm. Pharmacol. Ther. 2015, 35, S11–S19. DOI: https://doi.org/10.1016/j.pupt.2015.10.002
  27. Bardin, P.; Kanniess, F.; Gauvreau, G.; et al. Roflumilast for Asthma: Efficacy Findings in Mechanism of Action Studies. Pulm. Pharmacol. Ther. 2015, 35, S4–S10. DOI: https://doi.org/10.1016/j.pupt.2015.08.006
  28. Bateman, E.D.; Goehring, U.M.; Richard, F.; et al. Roflumilast Combined with Montelukast versus Montelukast Alone as Add-On Treatment in Patients with Moderate-to-Severe Asthma. J. Allergy Clin. Immunol. 2016, 138, 142–149. DOI: https://doi.org/10.1016/j.jaci.2015.11.035
  29. Dixon, A.E.; Que, L.G.; Kalhan, R.; et al. Roflumilast May Increase Risk of Exacerbations When Used to Treat Poorly Controlled Asthma in People with Obesity. Ann. Am. Thorac. Soc. 2023, 20, 206–214. DOI: https://doi.org/10.1513/AnnalsATS.202204-368OC
  30. Chervinsky, P.; Meltzer, E.O.; Busse, W.; et al. Roflumilast for Asthma: Safety Findings from a Pooled Analysis of Ten Clinical Studies. Pulm. Pharmacol. Ther. 2015, 35, S28–S34. DOI: https://doi.org/10.1016/j.pupt.2015.11.003
  31. Menzies-Gow, A.; Corren, J.; Bourdin, A.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. DOI: https://doi.org/10.1056/NEJMoa2034975
  32. Wechsler, M.E.; Ford, L.B.; Maspero, J.F.; et al. Long-Term Safety and Efficacy of Dupilumab in Patients with Moderate-to-Severe Asthma (TRAVERSE): An Open-Label Extension Study. Lancet Respir. Med. 2022, 10, 11–25. DOI: https://doi.org/10.1016/S2213-2600(21)00322-2
  33. Rogliani, P.; Calzetta, L.; Matera, M.G.; et al. Severe Asthma and Biological Therapy: When, Which, and for Whom. Pulm. Ther. 2020, 6, 47–66. DOI: https://doi.org/10.1007/s41030-019-00109-1
  34. Carr, T.F.; Moore, W.C.; Kraft, M.; et al. Efficacy of Tezepelumab in Patients with Severe, Uncontrolled Asthma across Multiple Clinically Relevant Subgroups in the NAVIGATOR Study. Adv. Ther. 2024, 41, 2978–2990. DOI: https://doi.org/10.1007/s12325-024-02889-8
  35. Matera, M.G.; Rogliani, P.; Calzetta, L.; et al. Phosphodiesterase Inhibitors for Chronic Obstructive Pulmonary Disease: What Does the Future Hold? Drugs 2014, 74, 1983–1992. DOI: https://doi.org/10.1007/s40265-014-0303-8
  36. Phillips, J.E. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for Inflammatory Respiratory Diseases. Front. Pharmacol. 2020, 11, 259. DOI: https://doi.org/10.3389/fphar.2020.00259
  37. Lipworth, B.J. Phosphodiesterase-4 Inhibitors for Asthma and Chronic Obstructive Pulmonary Disease. Lancet 2005, 365, 167–175. DOI: https://doi.org/10.1016/S0140-6736(05)17708-3
  38. Kawamatawong, T. Roles of Roflumilast, a Selective Phosphodiesterase 4 Inhibitor, in Airway Diseases. J. Thorac. Dis. 2017, 9, 1144–1154. DOI: https://doi.org/10.21037/jtd.2017.03.116
  39. Cilli, A.; Bal, H.; Gunen, H. Efficacy and Safety Profile of Roflumilast in a Real-World Experience. J. Thorac. Dis. 2019, 11, 1100–1105. DOI: https://doi.org/10.21037/jtd.2019.04.49
  40. Giembycz, M.A.; Field, S.K. Roflumilast: First Phosphodiesterase 4 Inhibitor Approved for Treatment of COPD. Drug Des. Devel. Ther. 2010, 4, 147–158. DOI: https://doi.org/10.2147/DDDT.S7667