RAD54-Like Protein 2 Is a Potential Diagnostic and Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma

ENT Updates

Article

RAD54-Like Protein 2 Is a Potential Diagnostic and Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma

Xu, X., & Ma, L. (2025). RAD54-Like Protein 2 Is a Potential Diagnostic and Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma. ENT Updates, 15(4), 1–18. https://doi.org/10.54963/entu.v15i4.1626

Authors

  • Xingnong Xu

    School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
    Department of Pharmacy, Yancheng Third People's Hospital, Affiliated Hospital 6 of Nantong University, Yancheng 224000, China
  • Lei Ma

    School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China

Received: 21 September 2025; Revised: 12 November 2025; Accepted: 20 November 2025; Published: 2 December 2025

Head and Neck Squamous Cell Carcinoma (HNSCC) poses a major global health challenge, highlighting the demand for reliable biomarkers to enable earlier detection and improve patient survival. This study sought to evaluate the diagnostic and prognostic significance of RAD54-like Protein 2 (RAD54L2) in HNSCC. RAD54L2 expression was assessed across multiple cancer types, including HNSCC, using data sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Through R-based analysis of RNA-seq data from TCGA-HNSCC, differentially expressed genes (DEGs) were identified between tumors with high and low RAD54L2 expression. RAD54L2 may be a useful diagnostic and prognostic biomarker in HNSCC. Using various statistical methods, we explored the relationship between RAD54L2 levels and immune cell infiltration, DNA methylation patterns and genetic alterations in RAD54L2, RAD54L2 expression with clinicopathological features of HNSCC patients, and the diagnostic and prognostic utility of RAD54L2. Its expression was markedly upregulated in tumor tissues versus controls. RAD54L2 expression exhibited significant correlations with immune infiltration, cell cycle genes, and androgen receptor (AR) in HNSCC. DNA methylation levels at three CpG sites within the RAD54L2 gene were linked to patient prognosis. Furthermore, RAD54L2 expression was associated with multiple clinicopathological variables, including M, N, and T stages, age, gender, race, tumor status, and overall stage. ROC analysis and nomogram model indicated that RAD54L2 effectively discriminated HNSCC from non-tumor tissues. These findings underscore the potential diagnostic and prognostic utility of RAD54L2, supporting its promise as a therapeutic target in HNSCC.

Keywords:

RAD54L2; Head and Neck Squamous Cell Carcinoma; HNSCC; Prognosis

References

  1. Johnson, D.E.; Burtness, B.; Leemans, C.R.; et al. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 1–22. DOI: https://doi.org/10.1038/s41572-020-00224-3
  2. Ferris, R.L.; Blumenschein, G.J.; Fayette, J.; et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2022, 375, 1856–1867. DOI: https://doi.org/10.1056/NEJMoa1602252
  3. Burtness, B.; Harrington, K.J.; Greil, R.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. DOI: https://doi.org/10.1016/S0140-6736(19)32591-7
  4. Cramer, J.D.; Burtness, B.; Ferris, R.L. Immunotherapy for head and neck cancer: Recent advances and future directions. Oral Oncol. 2019, 99, 104460. DOI: https://doi.org/10.1016/j.oraloncology.2019.104460
  5. Schoenfeld, J.D.; Hanna, G.J.; Jo, V.Y.; et al. Neoadjuvant Nivolumab or Nivolumab plus Ipilimumab in untreated oral cavity squamous cell carcinoma: A phase 2 open-label randomized clinical trial. JAMA Oncol. 2020, 6, 1563–1570. DOI: https://doi.org/10.1001/jamaoncol.2020.2955
  6. D'Alessandro, G.; Morales-Juarez, D.A.; Richards, S.L.; et al.. RAD54L2 counters TOP2-DNA adducts to promote genome stability. Sci. Adv. 2023, 9, eadl2108. DOI: https://doi.org/10.1126/sciadv.adl2108
  7. Jung, J.H.; Edith, C.; Cassandra, J.W.; et al. The BLM-TOP3A-RMI1-RMI2 proximity map reveals that RAD54L2 suppresses sister chromatid exchanges. EMBO. Rep. 2025, 26, 1290–1314. DOI: https://doi.org/10.1038/s44319-025-00374-z
  8. Diego, D.; Martin, L.; Francesca, V.; et al. H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours. Nat. Commun. 2024, 15, 4430. DOI: https://doi.org/10.1038/s41467-024-48715-1
  9. Gu, Y.; Chen, B.Y.; Guo, D.L.; et al. Up-Regulation of RACGAP1 Promotes Progressions of Hepatocellular Carcinoma Regulated by GABPA via PI3K/AKT Pathway. Oxid. Med. Cell. Longev. 2022, 72, 3034150. DOI: https://doi.org/10.1155/2022/3034150
  10. Cao, X.; Chen, J.L.; Zhang, R.; et al. Study on the expression and function of RAD54L in oral squamous cell carcinoma. J. Prev. Treat. Stomatol. Dis. 2024, 32, 853–862. DOI: https://doi.org/10.12016/j.issn.2096-1456.202440243
  11. Yuan, J.S.; Lv, T.; Yang, J.; et al. HDLBP Promotes Hepatocellular Carcinoma Proliferation and Sorafenib Resistance by Suppressing Trim71-dependent RAF1 Degradation. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 307–325. DOI: https://doi.org/10.1016/j.jcmgh.2022.10.005
  12. Liu, H.; Sima, X.X; Xiao, B.J.; et al. Integrated analysis of single-cell and bulk RNA sequencing data reveals a myeloid cell-related regulon predicting neoadjuvant immunotherapy response across cancers. J. Transl. Med. 2024, 22, 486. DOI: https://doi.org/10.1186/s12967-024-05123-9
  13. Wu, W.J.; Wu, W.J.; Xie, X.X.; et al. DNMT1 is required for efficient DSB repair and maintenance of replication fork stability, and its loss reverses resistance to PARP inhibitors in cancer cells. Oncogene. 2025, 44, 2283–2302. DOI: https://doi.org/10.1038/s41388-025-03409-w
  14. Verma, S.; Sahu, B.D.; Mugale, M.N. Role of lncRNAs in hepatocellular carcinoma. Life. Sci. 2023, 325, 121751. DOI: https://doi.org/10.1016/j.lfs.2023.121751
  15. Wang, C.Q.; Huang, W.D.; Zhong, Y.; et al. Single-cell multi-modal chromatin profiles revealing epigenetic regulations of cells in hepatocellular carcinoma. Clin. Transl. Med. 2024, 14, e7000. DOI: https://doi.org/10.1002/ctm2.70000
  16. Sun, Y.; Chen, S.; Lu, Y.; et al. Single-cell transcriptomic analyses of tumor microenvironment and molecular reprograming landscape of metastatic laryngeal squamous cell carcinoma. Commun. Biol. 2024, 7, 63. DOI: https://doi.org/10.1038/s42003-024-05765-x
  17. Cui, C.; Wang, J.W.; Fagerberg, E.; et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell. 2021, 184, 6101–6118. DOI: https://doi.org/10.1016/j.cell.2021.11.007
  18. Wu, J.X.; Wang, Y.; Bai, S.H.; et al. Aberrant alteration of peripheral B lymphocyte subsets in hepatocellular carcinoma patients. Int. J. Med. Sci. 2023, 20, 267–277. DOI: https://doi.org/10.7150/ijms.79305
  19. Anguille, S.; Acker, H.H.A.; Bergh, J.V.D.; et al. Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLoS One 2015, 10, e0123340. DOI: https://doi.org/10.1371/journal.pone.0123340
  20. Han, S.L.; Bao, X.Y.; Zou, Y.F.; et al. d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci. Adv. 2023, 9, eadg2697. DOI: https://doi.org/10.1126/sciadv.adg2697
  21. Chen, H.; Li, Z.L.; Qiu, L.M.; et al. Personalized neoantigen vaccine combined with PD-1 blockade increases CD8+ tissue-resident memory T-cell infiltration in preclinical hepatocellular carcinoma models. J. Immunother. Cancer. 2022, 10, e004389. DOI: https://doi.org/10.1136/jitc-2021-004389
  22. Vo, M.C.; Jung, S.H.; Chu, T.C.; et al. Lenalidomide and Programmed Death-1 Blockade Synergistically Enhances the Effects of Dendritic Cell Vaccination in a Model of Murine Myeloma. Front. Immunol. 2018, 9, 1370. DOI: https://doi.org/10.3389/fimmu.2018.01370
  23. Tal, S.G.; Dulberg, S.; Beck, L.; et al. Metastasis-Entrained Eosinophils Enhance Lymphocyte-Mediated Antitumor Immunity. Cancer Res. 2021, 81, 5555–5571. DOI: https://doi.org/10.1158/0008-5472.CAN-21-0839
  24. Li, M.Y.; Wang, L.N.; Cong, L.; et al. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology 2024, 79, 560–574. DOI: https://doi.org/10.1097/HEP.0000000000000591
  25. Gambardella, A.R.; Antonucci, C.; Zanetti, C.; et al. IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells. J. Exp. Clin. Cancer. Res. 2024, 43, 209. DOI: https://doi.org/10.1186/s13046-024-03129-1
  26. Mishima, Y.; Tomari, Y. Pervasive yet nonuniform contributions of Dcp2 and Cnot7 to maternal mRNA clearance in zebrafish. Genes Cells 2017, 22, 670–678. DOI: https://doi.org/10.1111/gtc.12504
  27. Michalek, S.; Brunner, T. Nuclear-mitochondrial crosstalk: On the role of the nuclear receptor liver receptor homolog-1 (NR5A2) in the regulation of mitochondrial metabolism, cell survival, and cancer. IUBMB Life 2021, 73, 592–610. DOI: https://doi.org/10.1002/iub.2386
  28. Ansari, A.; Szczesnowska, A.; Haddad, N.; et al. The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers. Noncoding RNA 2025, 11, 61. DOI: https://doi.org/10.3390/ncrna11040061
  29. Ye, Q.; Ma, J.; Wang, Z.X.; et al. DTX3L-mediated TIRR nuclear export and degradation regulates DNA repair pathway choice and PARP inhibitor sensitivity. Nat. Commun. 2024, 15, 10596. DOI: https://doi.org/10.1038/s41467-024-54978-5
  30. Zhou, Y.J.; Chen, Y.X.; Shi, Y.W.; et al. FAM117B promotes gastric cancer growth and drug resistance by targeting the KEAP1/NRF2 signaling pathway. J. Clin. Invest. 2023, 133, e158705. DOI: https://doi.org/10.1172/JCI158705
  31. Tao, X.R.; Wang, Y.L.; Xiang, B.H.; et al. Sex bias in tumor immunity: insights from immune cells. Theranostics 2025, 15, 5045–5072. DOI: https://doi.org/10.7150/thno.106465
  32. Lechner, M.; Fenton, T.; West, J.; et al. Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med. 2013, 5, 15. DOI: https://doi.org/10.1186/gm419
  33. Deng, Y.L.; Lu, L.Q.; Liang, X.J.; et al. DNA methylation-mediated silencing of Neuronatin promotes hepatocellular carcinoma proliferation through the PI3K-Akt signaling pathway. Life. Sci. 2023, 312, 121266. DOI: https://doi.org/10.1016/j.lfs.2022.121266
  34. Caswell, D.R.; Gui, P.; Mayekar, M.K.; et al. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat. Genet. 2024, 56, 60–73. DOI: https://doi.org/10.1038/s41588-023-01592-8
  35. Manea, I.; Razvan Iacob, R.; Iacob, S.; et al. Liquid biopsy for early detection of hepatocellular carcinoma. Front. Med. 2023, 10, 1218705. DOI: https://doi.org/10.3389/fmed.2023.1218705
  36. Xu, X.; Li, Y.X.; Wu, Y.L.; et al. Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer. Redox Biol. 2023, 59, 102564. DOI: https://doi.org/10.1016/j.redox.2022.102564
  37. Feng, J.; Hu, J.J. Xia, Y.; et al. Identification of RAD54 homolog B as a promising therapeutic target for breast cancer. Oncol. Lett. 2019, 18, 5350–5362. DOI: https://doi.org/ 10.3892/ol.2019.10854
  38. Geng, T.T.; Li, M.; Chen, R.; et al. Impact of GTF2H1 and RAD54L2 polymorphisms on the risk of lung cancer in the Chinese Han population. BMC Cancer 2022, 22, 1181. DOI: https://doi.org/10.1186/s12885-022-10303-1
  39. Kondo, N.; Takahashi, A. Mori, E.; et al. DNA ligase IV as a new molecular target for temozolomide. Biochem. Biophys. Res. Commun. 2009, 387, 656–660. DOI: https://doi.org/10.1016/j.bbrc.2009.07.045
  40. Kaur, E.; Agrawal, R.; Arun, R.; et al. Small molecules that disrupt RAD54-BLM interaction hamper tumor proliferation in colon cancer chemoresistance models. J. Clin. Invest. 2024, 134, e161941. DOI: https://doi.org/10.1172/JCI161941
  41. Zeng, Y.; Luo, C.L.; Lin, G.W.; et al. Whole-exome sequencing association study reveals genetic effects on tumormicroenvironment components in nasopharyngeal carcinoma. J. Clin. Invest. 2025, 135, 182768. DOI: https://doi.org/10.1172/JCI182768
  42. Nguyen, N.H.K.; Rafiee, R.; Tagmount, A.; et al. Genome-wide CRISPR/Cas9 screen identifies etoposide response modulators associated with clinical outcomes in pediatric AML. Blood Adv. 2023, 7, 1769–1783. DOI: https://doi.org/10.1182/bloodadvances.2022007934