New Energy Exploitation and Application

Volume 2 Issue 1: June 2023

Article

Significant Development Potential of the Solid Oxide Fuel Cell for the Technical Progress of the Marine Main Propulsion Plant in the Context of Energy Conservation and Emission Reduction

The International Maritime Organization (IMO) has proposed a series of strict pollutant emission regulations and carbon emission reduction targets, and the shipping industry is seeking new types of the marine main propulsion plant with advantages of high-efficiency and low-emission. Among the possible alternatives, the marine electric propulsion technology whose electric power source is fuel cell has gained sufficient attentions. At present, the worldwide research of the marine applications for fuel cell supplying propulsion power focuses more on the proton exchange membrane fuel cell (PEMFC) with low power instead of other types of fuel cell, and a series of research projects have achieved concrete results such as the industrialized marine fuel cell system or practical demonstration application. But the development trends of the application of the marine fuel cell supplying propulsion power are from the small boat to the great ship, from the navigating zone with low environmental complexity such as coastal water, inland waters to the ocean with complex navigation conditions. Thus, the power demand of the marine fuel cell in the future will show steady growth, which will create more development opportunities for the solid oxide fuel cell (SOFC) with the advantages of higher power, greater efficiency, long life span and fuel diversity. Although some challenges exist, the solid oxide fuel cell with significant development potential can certainly lead the technical progress of the marine main propulsion plant in the context of energy conservation and emission reduction.

Read more

Article

Token-Based Smart Power Contract for Interoperable Blockchains of Networked Microgrid System

Designing the secure and privacy-protected smart power contract between electricity suppliers and consumers, considered agents, of different microgrids, is a challenging task in the networked- microgrid system. A framework is suggested in which each microgrid implements a heterogeneous or isomorphic blockchain based platform. The blockchain interoperability, inherently, is present in different blockchains implemented by various microgrids. This paper reviews the interoperability issues and smart contract designs in blockchain based systems. The paper proposes new mechanisms to cater blockchain interoperability challenges to facilitate the design of secure and seamless smart contracts among different blockchains of microgrids. A network hub of heterogeneous or isomorphic blockchains of network microgrids has been created. A methodology has been developed to transfer tokens between interoperable blockchains. Distributed identity-based microgrid (DIBM) scheme is incorporated to make the networked microgrid system secure and trustworthy. This paper suggests an effective consensus protocol for cross-chain architecture that improves the tokenization system and smart power contract designs. For simulation purposes, MATLAB and python programming have been used with real-time data of microgrids.

Read more