Volume 3 Issue 2 (2024): In Progress

Article

The Influence of Gas Pulsed Flow on Hydrodynamic Behaviors of Refined Standard Sugar

The influence of gas-pulsed flow when supplied in the perpendicular direction to the refined standard (RS) sugar layer has been studied in this article. Some hydrodynamic parameters of the RS sugar in the gas-pulsed fluidized bed have also been determined. The research results have been applied in the design of the RS sugar dryer using the modern pulsed fluidized bed drying method. The bed porosity in the static particle layer (e0) was 0.44 while the bed porosity in the minimum fluidized bed (emg) was 0.484 and the minimum fluidized bed velocity (Umg) was 0.65 m/s. The bed porosity in the homogeneous fluidization bed (ehg) was 0.67, and the homogeneous fluidization velocity (Uhg) of 1.63 m/s has been calculated. The critical velocity (Ucg) of 2.7 m/s and the bed porosity (ecg) of 0.8 in the circulating particle bed were determined. The pressure drop through the layer of RS sugar with a thickness of 300 mm was 3808 N/m2.

Read more

Review

Household Fuelwood Consumption and Its Implication for Carbon Dioxide Emission

This review paper aims to gather informative data on the impact of climate extremes on the physical environment, public health, and the livelihoods of people in Ethiopia. The primary sources of data for this review were peer-reviewed journal articles obtained from electronic databases such as PubMed, Central, Scopus, and Web of Science. Globally, the vast majority of households in developing countries depend on wood energy for their daily energy needs. Such consumption trends are expected to remain a common feature of traditional wood energy production and consumption, at least in the short- to medium-terms. This situation increases the demand for firewood and charcoal from the forest. The process of harvesting standing trees for charcoal and fire wood leads to forest degradation. Although woody biomass has the function of energy consumption, and as a source of income for rural villagers and urban poor dwellers practicing agriculture, wood energy generally has low priority in national policies of developing countries. However, unsustainable management and negative environmental consequences in humid and dry forests is derived from the use of fuel wood energy. Still now there is an unsystematic assessment of the economic contribution and environmental consequences of wood energy use, so its significance and consequences have been minimized. This deforestation and forest degradation contributes 1–2.4 Gt CO2e of greenhouse gases, which is 2–7% of global anthropogenic emissions, with global greenhouse gas emissions mostly CO2.

Read more

Article

Eco-Smart Integration Harnessing ESP32 Microcontroller for Solar-Powered Home Efficiency

As smart home technology advances, the quest for sustainable energy management solutions grows. This study examines the interaction between solar energy systems and smart home activities, focusing on using an ESP32 microcontroller to regulate lighting and temperature. The proposed system combines sophisticated software algorithms with authentic hardware components to allow for real-time monitoring and control of light and temperature conditions, as well as online tracking of solar system data. Communication protocols and the ESP32 microcontroller create an integrated smart home system that allows homeowners to control their environment remotely using smart mobile devices. Solar panel installation enhances energy efficiency and decreases dependence on traditional grid-based electricity, promoting an environmentally friendly household setting. This study demonstrates how smart home systems may significantly change household energy usage patterns by evaluating hardware design and software execution to ensure comfort, safety, and sustainability. This research showed considerable advancements in energy conservation and improved home environmental control. We integrated smart controllers and light sensors to reduce daily lighting energy consumption from 0.17 kWh to 0.12 kWh, and our smart system reduced the initial air conditioning energy needs from 15.6 kWh/day to 14.48 kWh/day. These results indicate improvements in energy management and home environmental control.

Read more