Application of HEC-RAS for the Study of Sediment Continuity in the Clain River (Poitiers, France)

Journal of Hydrological Ecology and Water Security

Article

Application of HEC-RAS for the Study of Sediment Continuity in the Clain River (Poitiers, France)

Ghzayel, A., & Beaudoin, A. (2025). Application of HEC-RAS for the Study of Sediment Continuity in the Clain River (Poitiers, France). Journal of Hydrological Ecology and Water Security, 1(1), 49–72. https://doi.org/10.54963/jhews.v1i1.1386

Authors

  • Alaa Ghzayel

    FTC Department, Pprime Institute, University of Poitiers, 86073 Poitiers, France
  • Anthony Beaudoin

    FTC Department, Pprime Institute, University of Poitiers, 86073 Poitiers, France

Received: 2 March 2025; Revised: 20 April 2025; Accepted: 26 April 2025; Published: 5 May 2025

Research on sediment transport has focused on large dams, whose impacts are more visibly dramatic. The impacts of low-head dams, which are smaller and more numerous, have received less attention. It is partly due to the challenges of modeling sediment transport in these environments, which requires high-resolution data on flow dynamics and sediment properties. This work shows that there are tools allowing the acquisition of these hydrometric data and that the hydro-morphodynamic models can integrate it. The study site is the Clain river flowing through the Grand Poitiers municipality in the Vienne department (France), where low-head dams are installed at two key sites, Îlot Tison and Saint-Benoît, which pose potential barriers to sediment continuity. The hydro-morphodynamics of the Clain river are studied by means of the software HEC-RAS. The numerical simulations, performed in this work, show that the software HEC-RAS uses water flow and sediment transport equations tailored to specific conditions of the Clain river, a plain river with low-head dams. The robustness of the turbulent model and sediment transport laws present in the software HEC-RAS was checked for this river type. These numerical simulations allowed us to elucidate the hydro-morphodynamic impacts of two low-head dams present at the Saint-Benoît and Îlot Tison sites, on the Grand Poitiers municipality. For specific discharges exceeding the mean specific discharge of the Clain river, the low-head dams are bypassed. For specific discharges below the mean specific discharge of the Clain river, disturbances in water flow and sediment transport occur locally around these low-head dams. The occurrence of two phenomena, erosional narrowing and widening, depends on the height of the removal dam, the specific discharge, and the volume of stored sediments upstream of the removal dam. Removing these two low-head dams doesn’t disturb the hydro-morphodynamics of the Clain river at the large scale.

Keywords:

Sediment Transport Low-Head Dams Hydro-Morphodynamic Modeling Hydrometric Data HEC-RAS Software

References

  1. Fryirs, K.; Brierley, G. Practical Applications of the River Styles Framework as a Tool for Catchment-wide River Management: A Case Study from Bega Catchment, NSW, Australia; MacQuarie University: Auckland, New Zealand, 2005.
  2. Wohl, E.; Lane, S.N.; Wilcox, A.C. The Science and Practice of River Restoration. Water Resour. Res. 2015, 51, 5974–5997. DOI: https://doi.org/10.1002/2014WR016874
  3. Reid, L.M.; Dunne, T. Rapid Evaluation of Sediment Budgets; Catena: Reiskirchen, Germany, 1996; 29.
  4. Church, M. Geomorphic Thresholds in Riverine Landscapes. Freshw. Biol. 2002, 47, 541–557. DOI: https://doi.org/10.1046/j.1365-2427.2002.00919.x
  5. Maire, A.; Laffaille, P.; Maire, J.F.; et al. Identification of Priority Areas for the Conservation of Stream Fish Assemblages: Implications for River Management in France. River Res. Appl. 2017, 33, 524–537. DOI: https://doi.org/10.1002/rra.3107
  6. Askeyev, A.; Askeyev, O.; Askeyev, I.; et al. Predatory Fish Species as Indicators of Biodiversity: Their Distribution in Environmental Gradients in Small and Mid-Sized Rivers in Eastern Europe. Environ. Biol. Fishes 2021, 104, 767–778. DOI: https://doi.org/10.1007/s10641-021-01113-8
  7. Williams, G.P.; Wolman, M.G. Downstream Effects of Dams on Alluvial Rivers; US Government Printing Office: Washington, DC, USA, 1984. DOI: https://doi.org/10.3133/pp1286
  8. Graf, W.L. Geomorphology and American Dams: The Scientific, Social, and Economic Context. Geomorphology 2005, 71, 3–26. DOI: https://doi.org/10.1016/j.geomorph.2004.05.005
  9. Grant, G.; Nash, C.; Selker, J.S.; et al. A Physical Framework for Evaluating Net Effects of Wet Meadow Restoration on Late Summer Streamflow. Ecohydrology 2018, 11, 1–15.
  10. Schmutz, S.; Moog, O. Dams: Ecological Impacts and Management. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Springer: Cham, Switzerland, 2018; pp. 111–127. DOI: https://doi.org/10.1007/978-3-319-73250-3_6
  11. Smith, S.G.; Muir, W.D.; Williams, J.G.; et al. Factors Associated with Travel Time and Survival of Migrant Yearling Chinook Salmon and Steelhead in the Lower Snake River. N. Am. J. Fish. Manag. 2002, 22, 385–405.
  12. May, C.L.; Pryor, B.S. Initial Motion and Bedload Transport Distance Determined by Particle Tracking in a Large Regulated River. River Res. Appl. 2014, 30, 508–520. DOI: https://doi.org/10.1002/rra.2665
  13. Dépret, T.; Piégay, H.; Dugué, V.; et al. Estimating and Restoring Bedload Transport Through a Run-of-River Reservoir. Sci. Total Environ. 2019, 654, 1146–1157. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.177
  14. Csiki, S.; Rhoads, B.L. Hydraulic and Geomorphological Effects of Run-of-River Dams. Prog. Phys. Geogr. 2010, 34, 755–780. DOI: https://doi.org/10.1177/0309133310369435
  15. Kondolf, G.M.; Gao, Y.; Annandale, G.W.; et al. Sustainable Sediment Management in Reservoirs and Regulated Rivers: Experiences from Five Continents. Earth’s Future 2014, 2, 256–280. DOI: https://doi.org/10.1002/2013EF000184
  16. Beaudoin, A. Study of the Impact of the Îlot Tison Weir on Bedload Transport of the Clain River (Poitiers, France) Using BASEMENT Software. River Res. Appl. 2022, 38, 1555–1568. DOI: https://doi.org/10.1002/rra.4029
  17. Ward, J.V.; Stanford, J.A. Ecological Connectivity in Alluvial River Ecosystems and Its Disruption by Flow Regulation. Regul. Rivers Res. Manag. 1995, 11, 105–119. DOI: https://doi.org/10.1002/rrr.3450110109
  18. Roni, P.; Beechie, T. Stream and Watershed Restoration: A Guide to Restoring Riverine Processes and Habitats; Wiley: Hoboken, NJ, USA, 2012. DOI: https://doi.org/10.1002/9781118406618
  19. Ligon, F.K.; Dietrich, W.E.; Trush, W.J. Downstream Ecological Effects of Dams: A geomorphic perspective. BioScience 1995, 45, 183–192. DOI: https://doi.org/10.2307/1312557
  20. Poff, N.L.; Allan, J.D.; Bain, M.B.; et al. The Natural Flow Regime. BioScience 1997, 47, 769–784. DOI: https://doi.org/10.2307/1313099
  21. Brandt, S.A. Prediction of Downstream Geomorphological Changes After Dam Construction: A Stream Power Approach. Int. J. Water Resour. Dev. 2000, 16, 343–367. DOI: https://doi.org/10.1080/713672510
  22. Rollet, A.J.; Piégay, H.; Dufour, S.; et al. Assessment of Consequences of Sediment Deficit on a Gravel River Bed Downstream of Dams in Restoration Perspectives: Application of a Multicriteria, Hierarchical and Spatially Explicit Diagnosis. River Res. Appl. 2014, 30, 939–953. DOI: https://doi.org/10.1002/rra.2689
  23. Major, J.J.; East, A.E.; O’Connor, J.E.; et al. Geomorphic Responses to Dam Removal in the United States–A Two-Decade Perspective. In Gravel-Bed Rivers: Processes and Disasters; Wiley: Hoboken, NJ, USA, 2017; 13, pp. 355–383.
  24. Kondolf, G.M. Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ. Manag. 1997, 21, 533–551. DOI: https://doi.org/10.1007/s002679900048
  25. Magilligan, F.J.; Roberts, M.O.; Marti, M.; et al. The Impact of Run-of-River Dams on Sediment Longitudinal Connectivity and Downstream Channel Equilibrium. Geomorphology 2021, 376, 107568. DOI: https://doi.org/10.1016/j.geomorph.2020.107568
  26. Pander, J.; Geist, J. Ecological Indicators for Stream Restoration Success. Ecol. Indic. 2013, 30, 106–118. DOI: https://doi.org/10.1016/j.ecolind.2013.01.039
  27. Doyle, M.W.; Stanley, E.H.; Harbor, J.M.; et al. Dam Removal in the United States: Emerging Needs for Science and Policy. Eos, Trans. Am. Geophys. Union 2003, 84, 29–33. DOI: https://doi.org/10.1029/2003EO040001
  28. Shih, W.; Diplas, P. Threshold of Motion Conditions under Stokes Flow Regime and Comparison with Turbulent Flow Data. Water Resour. Res. 2019, 55, 10872–10892.
  29. Ma, H.; Nittrouer, J.A.; Wu, B.; et al. Universal Relation with Regime Transition for Sediment Transport in Fine-Grained Rivers. Proc. Natl. Acad. Sci. USA 2020, 117, 171–176. DOI: https://doi.org/10.1073/pnas.1911225116
  30. Shrestha, R. 2D Numerical Modelling of Sediment Diversion in a River Bend. Master’s Thesis, NTNU, Trondheim, Norway, 2022.
  31. Gudgeirsdóttir, E.S. Assessment of a Sediment Management Solution in a Reservoir with a Sluicing Technique Using a HEC-RAS 2D Model: Case Study of Andakílsá River in West Iceland. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2023.
  32. Barré de Saint Venant, A.J.C. Theory of the unsteady movement of water, with application to river floods and the introduction of tides into their beds. Compt. Rendus Acad. Sci. 1871, 73, 147–154, 237–240. (in French)
  33. Gavrilyuk, S.; Ivanova, K.; Favrie, N. Multi-Dimensional Shear Shallow Water Flows: Problems and Solutions. J. Comput. Phys. 2018, 366, 252–280. DOI: https://doi.org/10.1016/j.jcp.2018.04.011
  34. Ngatcha, A.R.N.; Nkonga, B. A Sediment Transport Theory Based on Distortion-Free-Boundary Nonhomogeneous Fluid Flows. Appl. Eng. Sci. 2023, 15, 100148. DOI: https://doi.org/10.1016/j.apples.2023.100148
  35. Reynolds, O. IV. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. Lond. A 1895, 186, 123–164.
  36. Teshukov, V.M. Gas-Dynamic Analogy for Vortex Free-Boundary Flows. J. Appl. Mech. Tech. Phys. 2007, 48, 303–309.
  37. Richard, G.L.; Gavrilyuk, S.L. A New Model of Roll Waves: Comparison with Brock’s Experiments. J. Fluid Mech. 2012, 698, 374–405. DOI: https://doi.org/10.1017/jfm.2012.96
  38. Elder, J.W. The Dispersion of Marked Fluid in Turbulent Shear Flow. J. Fluid Mech. 1959, 5, 544–560.
  39. Adanta, A.; Fattah, I.M.R.; Muhammad, N.M. Comparison of Standard k-Epsilon and SST k-Omega Turbulence Model for Breastshot Waterwheel Simulation. J. Mech. Sci. Eng. 2020, 7, 39–44.
  40. Duffal, V. Development of a hybrid RANS-LES model for the study of unsteady wall forces. Doctoral Dissertation, Université de Pau et des Pays de l’Adour, Pau, France, 2020. Available online: https://theses.hal.science/tel-03038837v1 (in France)
  41. Ngatcha, A.R.N. High Order Shallow Water Equations: Application to Dam Break Problems. J. Mech. 2024, 40, 820–842. DOI: https://doi.org/10.1093/jom/ufae062
  42. Smagorinsky, J. General Circulation Experiments with the Primitive Equations: I. The Basic Experiment. Mon. Weather Rev. 1963, 91, 99–164. DOI: https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  43. Ghzayel, A. Experimental and numerical studies of the impact of thresholds on sedimentary continuity. PhD Thesis, Université de Poitiers, Poitiers, France, 2023. Available online: https://theses.fr/s372096 (in French)
  44. Ngatcha, A.R.N.; Bandji, D.; Njifenjou, A. Coupling of Sediment Transport Phenomena with Turbulent Surface Flows: Mathematical Modeling, Finite Volume Approximation and Test Simulations. Eur. J. Environ. Civ. Eng. 2024, 28, 3204–3237. DOI: https://doi.org/10.1080/19648189.2024.2332460
  45. Ngatcha, A.R.N. A High Order Path-Conservative Central-Upwind Arbitrary DERivative (PCCU-ADER) Method for a Generalized High Order Sediment Transport Model. Comput. Math. Appl. 2025, 198, 131–177. DOI: https://doi.org/10.1016/j.camwa.2025.08.014
  46. Ghani, A.A.; Zakaria, N.A.; Kiat, C.C.; et al. Revised Equations for Manning’s Coefficient for Sand-Bed Rivers. Int. J. River Basin Manag. 2007, 5, 329–346.
  47. Hart, D.D.; Poff, N.L. A Special Section on Dam Removal and River Restoration. BioScience 2002, 52, 653–655.
  48. USACE Hydrologic Engineering Center. HEC-RAS 2D Sediment Technical Reference Manual; US Army Corps of Engineers: Vicksburg, MS, USA, 2023.
  49. CE3E. Étude du Devenir des Ouvrages sur le Clain de Sommières du Clain à Cenon-sur-Vienne et sur la Dive du Sud; Clain SAGE Coordination Unit: Poitiers, France, 2016.
  50. Gorin, C. Synergies of River and Land Circulation in Towns with Small Rivers: The 5 Case of Poitiers (France). Water 2021, 8, e1508 DOI: https://doi.org/10.1002/wat2.1508
  51. Brice, J.C.; Blodgett, J.C. Countermeasures for Hydraulic Problems at Bridges. Volume II: Case Histories for Sites 1-283; US Federal Highway Administration, Office of Research and Development: Washington, DC, USA, 1978.
  52. Schumm, S.A. The Fluvial System; Wiley-Interscience: New York, NY, USA, 1977.
  53. Syvitski, J.P. Principles, Methods and Application of Particle Size Analysis; Cambridge University Press: Cambridge, UK, 1991; 388.
  54. Jodeau, C. Morphodynamique d’un Banc de Galets en Rivière Aménagée lors de Crues. Doctoral Dissertation, Université Claude Bernard-Lyon I, Lyon, France, 2007.
  55. Fournier, J.; Bonnot-Courtois, C.; Paris, R.; et al. Analyses Granulométriques, Principes et Méthodes; CNRS: Dinard, France, 2012.
  56. Bae, J.H.; Luo, S.; Kannan, S.S.; et al. Development of an Unmanned Surface Vehicle for Remote Sediment Sampling with a Van Veen Grab Sampler. In Proceedings of OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; pp. 1–7. DOI: https://doi.org/10.23919/OCEANS40490.2019.8962837
  57. Hauet, A.; Morlot, T.; Daubagnan, L. Velocity profile and depth-averaged to surface velocity in natural streams: A review over alarge sample of rivers. E3S Web Conf. 2018, 40, 06015. DOI: https://doi.org/10.1051/e3sconf/20184006015
  58. Quantum Geographic Information System (QGIS). Open Source Geospatial Foundation Project; QGIS: Laax, Switzerland, 2022.
  59. IGN. Airborne lidar: precision measurements. Available online: https://ign.fr/institut/kiosque/lidar-aeroporte-des-mesures-de-precision (accessed on 30 October 2021).
  60. HEC-RAS. River Analysis System, Hydraulic Reference Manual, Version 6.6; US Army Corps of Engineers: Arlington, VA, USA, 2024.
  61. Randall, D.A. The Shallow Water Equations; Department of Atmospheric Science, Colorado State University: Fort Collins, CO, USA, 2006.
  62. Pilqvist, J.; Andersson, P.; Andric, J. Tutorial–ShallowWaterFOAM; Chalmers University of Technology: Göteborg, Sweden, 2010.
  63. Esteves, M.; Faucher, X.; Galle, S.; et al. Overland Flow and Infiltration Modelling for Small Plots During Unsteady Rain: Numerical Results Versus Observed Values. J. Hydrol. 2000, 228, 265–282. DOI: https://doi.org/10.1016/S0022-1694(00)00155-4
  64. Deardorff, J.W. A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers. J. Fluid Mech. 1970, 41, 453–480. DOI: https://doi.org/10.1017/S0022112070000691
  65. Ijaz, N.; Haider, S.; Muaaz, M. Development of a Hydrodynamic Model of the Irrigation Canal Network by Using HEC-RAS: A Case Study of Layyah Canal Division, Pakistan. Model. Earth Syst. Environ. 2025, 11, 195. DOI: https://doi.org/10.1007/s40808-025-02361-8
  66. El-Haddad, B.A.; Youssef, A.M.; Karimi, Z.; Pourghasemi, H.R. Flood Inundation Mapping Using HEC-RAS 2D Modeling and Examining the Impact of Changes in the Model-Meshing Pixel Scale on the Final Output. Water Resour. Manag. 2025, 39, 5807–5826. DOI: https://doi.org/10.1007/s11269-025-04228-0
  67. Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng. 1984, 110, 1431–1456. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  68. Arcement, G.L.; Schneider, V.R.; et al. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; US Government Printing Office: Washington, DC, USA, 1989.
  69. Zhu, Z.; LeRoy, J.Z.; Rhoads, B.L.; et al. HydroSedFoam: A New Parallelized Two-Dimensional Hydrodynamic, Sediment Transport, and Bed Morphology Model. Comput. Geosci. 2018, 120, 32–39. DOI: https://doi.org/10.1016/j.cageo.2018.07.008
  70. Garcia, M.; Parker, G. Entrainment of Bed Sediment into Suspension. J. Hydraul. Eng. 1991, 117, 414–435.
  71. Vanoni, V.A. Sedimentation Engineering; ASCE Library: Reston, VA, USA, 1975.
  72. Yatsu, E. On the Longitudinal Profile of the Graded River. Trans. Am. Geophys. Union 1955, 36, 655–663. DOI: https://doi.org/10.1029/TR036i004p00655
  73. Rice, S. The Nature and Controls on Downstream Fining Within Sedimentary Links. J. Sediment. Res. 1999, 69, 32–39. DOI: https://doi.org/10.2110/jsr.69.32
  74. Dingle, E.H.; Kusack, K.M.; Venditti, J.G.; et al. The Gravel-Sand Transition and Grain Size Gap in River Bed Sediments. Earth-Sci. Rev. 2021, 222, 103838.
  75. Lesser, G.R.; Roelvink, J.V.; Van Kester, J.T.M.; et al. Development and Validation of a Three-Dimensional Morphological Model. Coast. Eng. 2004, 51, 883–915. DOI: https://doi.org/10.1016/j.coastaleng.2004.07.014
  76. Morgan, J.A.; Kumar, N.; Horner-Devine, A.R.; et al. The Use of a Morphological Acceleration Factor in the Simulation of Large-Scale Fluvial Morphodynamics. Geomorphology 2020, 356, 107088. DOI: https://doi.org/10.1016/j.geomorph.2020.107088
  77. Balouchi, B.; Rüther, N.; Schwarzwälder, K.; et al. Temporal Variation of Braided Intensity and Morphodynamic Changes in a Regulated Braided River Using 2D Modeling and Satellite Images. River Res. Appl. 2024, 40, 708–724. DOI: https://doi.org/10.1002/rra.4268
  78. Cantelli, A.; Paola, C.; Parker, G. Experiments on Upstream‐Migrating Erosional Narrowing and Widening of an Incisional Channel Caused by Dam Removal. Water Resour. Res. 2004, 40, W03407. DOI: https://doi.org/10.1029/2003WR002940
  79. Cantelli, A.; Wong, M.; Parker, G.; et al. Numerical Model Linking Bed and Bank Evolution of Incisional Channel Created by Dam Removal. Water Resour. Res. 2007, 43, W07415. DOI: https://doi.org/10.1029/2006WR005621
  80. Ferrer-Boix, C.; Martín-Vide, J.P.; Parker, G. Channel Evolution After Dam Removal in a Poorly Sorted Sediment Mixture: Experiments and Numerical Model. Water Resour. Res. 2014, 50, 8997–9019.
  81. Amos, R.A.; Annable, W.K. Upstream River Responses to Low-Head Dam Removal. In World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat; ASCE: Reston, VA, USA, 2007; pp. 1–8.
  82. Amos, R.A. Upstream River Responses to Low-Head Dam Removal. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2008.
  83. Chow, V.T. Open Channel Hydraulics; McGraw-Hill Book Co. Inc.: New York, NY, USA, 1959.
  84. Graziano, A.A.; Halso, M.C.; Boes, R.M.; et al. Flood Hazard Assessment Due to Dam Breaching Considering River Morphodynamics. Nat. Hazards 2025, 121, 21633–21663.
  85. Halso, M.C.; Evers, F.M.; Boes, R.M.; Vetsch, D.F. Composite Modelling of Non-Cohesive Homogeneous Spatial Dam Breaches with Varied Grain Size Distributions. J. Hydraul. Res. 2025, 63, 425–444.
  86. Halso, M.C.; Evers, F.M.; Vetsch, D.F.; Boes, R.M. Effect of Grain Size Distribution in Non-Cohesive Spatial Dam Breach: Hydraulic Model Investigation and Systematic Calibration of 2D Numerical Model. J. Hydraul. Res. 2025, 63, 337–356.
  87. Marcus, W.A.; Roberts, K.; Harvey, L.; et al. An Evaluation of Methods for Estimating Manning's n in Small Mountain Streams. Mount. Res. Dev. 1992, 12, 227–239. DOI: https://doi.org/10.2307/3673667
  88. Wolman, M.G. A Method of Sampling Coarse River-Bed Material. EOS Trans. Am. Geophys. Union 1954, 35, 951–956.
  89. Bertin, S.; Friedrich, H. Field Application of Close-Range Digital Photogrammetry (CRDP) for Grain-Scale Fluvial Morphology Studies. Earth Surf. Process. Landf. 2016, 41, 1358–1369. DOI: https://dx.doi.org/10.1002/esp.3906