ENT Updates

Articles

Improved Scoring of Lund Mackay Score (LMS)

Downloads

Satyendra Nath Chakrabartty. (2024). Improved Scoring of Lund Mackay Score (LMS). ENT Updates, 14(3). https://doi.org/10.54963/entu.v14i3.898

Authors

Lund Mackay Score (LMS), modified Lund Kennedy (MLK) scores quantify degree of opacification for each sinus by numerical scoring systems. Correlations between LMS on paranasal sinus CT scans, MLK nasoendoscopic scores and associated tools like SNOT-22, RSDI, EPOS, PROMIS-29, etc. showed contrasting empirical results. The paper discusses methodological limitations of numerical scoring systems and provides a method of transforming ordinal discrete scores of a multi-point item to normally distributed proposed scores). Scale scores -scores) as sum of s also follow normal distribution and can include all indicators irrespective of scale formats. Normality of monotonically increasing P-scores and -scores of LMS/MLK satisfy desired properties, provide unique ranks to the individuals,  facilitate parametric analysis for diagnosis (ROC analysis), classification  and comparisons of different aspects of chronic rhinosinusitis measured by LMS/MLK and subjective measures of symptom scores reflecting disease severity. The method also facilitates statistical tests of equality of mean and variance of LMS/MLK for two groups or a single group at different time periods, significance of disease progression and better computation of reliability, factorial validity. Proposed method can better assess severity/disability of CRS and include all tools (pathological, clinical, patient-reported- outcomes and HRQoL instruments) irrespective of scale formats without any bias for advantaged or disadvantaged groups

Keywords:

Chronic Rhinosinusitis Lund–Mackay CT Score Sinusitis SNOT‑22 Normal Distribution Disease Progression

References

  1. Hopkins C.; Browne J.P.; Slack R.; et al. The Lund‐Mackay staging system for chronic rhinosinusitis: How is it used and what does it predict? Otolaryngol. Head Neck Surg. 2007, 137, 555–561.
  2. de Araújo Neto, S.A.; Baracat, E.C.E.; Felipe, L.F. A new score for tomographic opacificacation of paranasal sinuses in children. Braz. J. Otorhinolaryngol. 2010, 76, 491–498. DOI: https://doi.org/10.1590/S1808-86942010000400014
  3. Okushi, T.; Nakayama, T.; Morimoto, S.; et al. A modified Lund–Mackay system for radiological evaluation of chronic rhinosinusitis. Auris Nasus Larynx 2013, 40, 548–553. DOI: https://doi.org/10.1016/j.anl.2013.04.010
  4. Likness, M.; Pallanch, J.; Sherris, D.; et al. Computed Tomography Scans as an Objective Measure of Disease Severity in Chronic Rhinosinusitis. Otolaryngol. Head Neck Surg. 2014, 150, 305–11. DOI: https://doi.org/10.1177/0194599813513881
  5. Zinreich, S.J. Imaging for staging of rhinosinusitis. Ann. Otol. Rhinol. Laryngol. Suppl. 2004, 113, 19–23. DOI: https://doi.org/10.1177/00034894041130s506
  6. Frączek, M.; Masalski, M.; Guziński, M. Reliability of computed tomography scans in the diagnosis of chronic rhinosinusitis. Adv. Clin. Exp. Med. 2018, 27, 541–545. DOI: https://doi.org/10.17219/acem/80858
  7. Sudiro, M.; Kuntara, A.; Waldi.; D. Correlation of Lund-Mackay Score on Computed Tomography Scan and Nasoendoscopic Score in Chronic Rhinosinusitis. Acta Inform. Med. 2023, 31, 53–56. DOI: https://doi.org/10.5455/aim.2023.31.53-56.
  8. Fokkens, W.J.; Lund, V.J.; Mullol, J.; et al. European position paper on rhinosinusitis and nasal polyps. A summary for otorhinolaryngologists. Rhinology 2012, 50, 1–12. DOI: https://doi.org/10.4193/Rhino12.000.
  9. Laccourreye, O.; Fakhry, N.; Franco-Vidal, V.; et al. Statistics in scientific articles published in the European Annals of Otorhinolaryngology Head & Neck Diseases. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2021, 138, 89–92. DOI: https://doi.org/10.1016/j.anorl.2020.06.015
  10. Taheri, A.; Hasani, S.; Esfeedvajani, M.S.; et al. Sino‐nasal outcome Test‐22 and Lund–Mackay CT score to select endoscopic sinus surgery in chronic rhinosinusitis. World J. Otorhinolaryngol. Head Neck Surg. 2023, 10, 200–205. doi:10.1002/wjo2.112
  11. Brooks, S.G.; Trope, M.; Blasetti, M.; et al. Preoperative Lund-Mackay computed tomography score is associated with preoperative symptom severity and predicts quality-of-life outcome trajectories after sinus surgery. Int. Forum Allergy Rhinol. 2018, 8, 668–675. DOI: https://doi.org/10.1002/alr.22109.
  12. Snidvongs, K.; Chin, D.; Sacks, R.; et al. Eosinophilic rhinosinusitis is not a disease of ostiomeatal occlusion. Laryngoscope 2013, 123, 1070–1074. DOI: https://doi.org/10.1002/lary.23721
  13. Šimkovic, M.; Träuble, B. Robustness of statistical methods when measure is affected by ceiling and/or floor effect. PLoS ONE 2019, 14, e0220889.
  14. Clason, D.L.; Dormody, T.J. Analyzing Data Measured By Individual Likert-Type Items. J. Agric. Educ. 1994, 35, 31–35. https://doi.org/10.5032/jae.1994.04031
  15. Goulet, J.; Buta, E.; Carroll, C.; et al. Statistical Methods for the Analysis of NRS Pain Data. J. Pain 2015, 16, S7. DOI: https://doi.org/10.1016/j.jpain.2015.01.038
  16. Massey, C.J.; Ramos, L.; Beswick, D.M.; et al. Clinical Validation and Extension of an Automated, Deep Learning-Based Algorithm for Quantitative Sinus CT Analysis. Am. J. Neuroradiol. 2022, 43, 1318–1324. DOI: https://doi.org/10.3174/ajnr.A7616
  17. Humphries, S.M.; Centeno, J.P.; Notary, A.M.; et al. Volumetric assessment of paranasal sinus opacification on computed tomography can be automated using a convolutional neural network. Int. Forum Allergy Rhinol. 2020, 10, 1218–1225. DOI: https://doi.org/10.1002/alr.22588
  18. Chakrabartty, S.N. Improving linearity in health science Investigations. Health Sci. J. 2023, 17, 1–6.
  19. Bhattacharyya, N.; Fried, M.P. The accuracy of computed tomography in the diagnosis of chronic rhinosinusitis. Laryngoscope 2003, 113, 125–129. DOI: https://doi.org/10.1097/00005537-200301000-00023
  20. Bhattacharyya, N. Do maxillary sinus retention cysts reflect obstructive sinus phenomena? Arch Otolaryngol. Head Neck Surg. 2000, 126, 1369–1371. DOI: https://doi.org/10.1001/archotol.126.11.1369
  21. Hill, M.; Bhattacharyya, N.; Hall, T.R.; et al. Incidental paranasal sinus imaging abnormalities and the normal Lund score in children. Otolaryngol. Head Neck Surg. 2004, 130, 171–175. DOI: https://doi.org/10.1016/j.otohns.2003.11.006
  22. Ashraf, N.; Bhattacharyya, N. Determination of the incidental Lund score for the staging of chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 2001, 125, 483–486. DOI: https://doi.org/10.1067/mhn.2001.119324
  23. Do, B.A.; Lands, L.C.; Mascarella, M.A.; et al. Lund–Mackay and modified Lund–Mackay Score for sinus surgery in children with cystic fibrosis. Int. J. Pediatr. Otolaryngol. 2015, 79, 1341–1345.
  24. Rathor, A.; Bhattacharjee, A. Clinical-radiological correlation and role of computed tomography staging in chronic rhinosinusitis. World J. Otolaryngol. Head Neck Surg. 2017, 3, 169–175.
  25. Emmanuel, I.O.; Festus, E.O. Lund-Mackay Scoring of Incidental Paranasal Sinus Collection on Computed Tomography Scan of Head and Neck in the University of Benin Teaching Hospital, Nigeria. Borno Med. J. 2018, 15, 59–64.
  26. John Staniorski, C.; Price, C.P.; Weibman, A.R.; et al. Asthma onset pattern and patient outcomes in a chronic rhinosinusitis population. Int. Forum Allergy Rhinol. 2018, 8, 495–503. DOI: https://doi.org/10.1002/alr.22064
  27. Quinn, T.J.; Dawson, J.; Walters, M.R.; et al. Reliability of the modified Rankin Scale: a systematic review. Stroke 2009, 40, 3393–3395.
  28. Wilson, J.T.; Hareendran, A.; Hendry, A.; et al. Reliability of the modified Rankin Scale across multiple raters: benefits of a structured interview. Stroke 2005, 36, 777–781.
  29. Kottner, J.; Streiner, D.L. The difference between reliability and agreement. J. Clin. Epidemiol. 2011, 64, 701–702.
  30. Jelenchick, L.A.; Becker, T.; Moreno, M.A. Assessing the psychometric properties of the Internet Addiction Test (IAT) in US college students. Psychiatry Res. 2012, 196, 296–301.
  31. Young, K.S. Caught in the Net: How to Recognize the Signs of Internet Addiction—And a Winning Strategy for Recovery. John Wiley & Sons: New York, NY, USA, 1998.
  32. Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. DOI: https://doi.org/10.1016/j.jcm.2016.02.012
  33. Zhang, L.; Zhang, L.H. Comparison of different endoscopic scoring systems in patients with chronic rhinosinusitis: reliability, validity, responsiveness and correlation. Rhinology 2017, 55, 363–368.
  34. Mehta, M.P.; Hur, K.; Price, C.P.; et al. Radiographic disease severity in chronic rhinosinusitis patients and health care utilization. Laryngoscope Investig. Otolaryngol. 2021, 6, 924–931. DOI: https://doi.org/10.1002/lio2.663
  35. McClish, D.K. Analyzing a portion of the ROC curve. Med. Decis. Mak. 1989, 9, 190–195. DOI: https://doi.org/10.1177/0272989X8900900307
  36. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227.
  37. Kim, M.; Ramakrishna, R. New indices for cluster validity assessment. Pattern Recognit. Lett. 2005, 26, 2353–2363.
  38. Parkerson, H.A.; Noel, M.; Pagé, M.G.; et al. Factorial Validity of the English-Language Version of the Pain Catastrophizing Scale–Child Version. J. Pain 2013, 14, 1383–1389. DOI: https://doi.org/10.1016/j.jpain.2013.06.004
  39. ten Berge, J.M.F.; Hofstee, W.K. Coefficients alpha and reliabilities of unrotated and rotated components. Psychometrika 1999, 64, 83–90. DOI: https://doi.org/10.1007/BF02294321
  40. Chakrabartty, S.N. Sound Measurement of Patients Reported Outcomes. New Healthcare Advancements and Explorations (NHAE): Cheyenne, WY, USA. 2024; Volume 1. DOI: https://doi.org/10.1875 nhae.2024/001.