Ferroptosis-Related Gene BCL2L10 is Linked to Prognosis in Head and Neck Squamous Cell Carcinoma

ENT Updates

Articles

Ferroptosis-Related Gene BCL2L10 is Linked to Prognosis in Head and Neck Squamous Cell Carcinoma

Liu, G., Chen, Y., Xu, X., Zhu, Y., Ye, X., & Liu, S. (2025). Ferroptosis-Related Gene BCL2L10 is Linked to Prognosis in Head and Neck Squamous Cell Carcinoma. ENT Updates, 15(3), 49–62. https://doi.org/10.54963/entu.v15i3.1450

Authors

  • Guancheng Liu

    International Cultural and Educational College, Northeast Agricultural University, Harbin 150030, China
  • Yulin Chen

    College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
  • Xingnong Xu

    School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
    Department of Pharmacy, Yancheng Third People’s Hospital, Yancheng 224000, China
  • Yudi Zhu

    International Cultural and Educational College, Northeast Agricultural University, Harbin 150030, China
  • Xing Ye

    Department of Pharmacy, Taizhou Second People’s Hospital, Taizhou 225500, China
  • Shichao Liu

    College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China

Ferroptosis, an iron-dependent form of regulated cell death, is driven by the accumulation of lipid peroxides and shaped by mitochondrial metabolism. However, the role of BCL2L10 (B-cell lymphoma 2-like 10)—a gene previously implicated in ferroptosis—in affecting the immune microenvironment and clinical progression of head and neck squamous cell carcinoma (HNSCC) remains unclear. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we compared BCL2L10 expression in HNSCC tumors and matched normal tissues and corroborated the results with immunohistochemistry images from the Human Protein Atlas (HPA). Logistic regression and Kaplan–Meier analyses were then applied to assess the relationship between BCL2L10 levels and clinical outcomes. The protein–protein interaction network centered on BCL2L10 was constructed with the STRING database, and the immunological relevance of BCL2L10 was explored through three complementary approaches: Gene Ontology (GO) annotation, gene set enrichment analysis (GSEA), and single-sample GSEA (ssGSEA). BCL2L10 mRNA levels were markedly higher in HNSCC tumors than in adjacent normal tissues. Nevertheless, univariate survival analysis revealed no significant difference in overall survival between patients with high versus low BCL2L10 expression (p > 0.05). Mechanistically, BCL2L11 emerged as a key interactor of BCL2L10, and tumors overexpressing BCL2L10 exhibited reduced infiltration by immune cells. Overall, elevated BCL2L10 expression in HNSCC is associated with an unfavorable prognosis and an immunosuppressive tumor microenvironment.

Keywords:

BCL2L10 Head and Neck Squamous Cell Carcinoma Immune Infiltration

References

  1. Johnson, D.E.; Burtness, B.; Leemans, C.R.; et al. Head and Neck Squamous Cell Carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. DOI: https://doi.org/10.1038/s41572-020-00224-3
  2. Ferris, R.L.; Blumenschein, G.; Fayette, J.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. DOI: https://doi.org/10.1056/NEJMoa1602252
  3. Cohen, E.E.W.; Soulières, D.; Tourneau, C.L.; et al. Pembrolizumab Versus Methotrexate, Docetaxel, or Cetuximab for Recurrent or Metastatic Head-and-Neck Squamous Cell Carcinoma (KEYNOTE-040): A Randomised, Open-Label, Phase 3 Study. Lancet Oncol. 2019, 303, 156–167. DOI: https://doi.org/10.1016/S0140-6736(18)31999-8
  4. Gillison, M.L.; Trotti, A.M.; Harris, J.; et al. Radiotherapy Plus Cetuximab or Cisplatin in Human Papillomavirus-Positive Oropharyngeal Cancer (NRG Oncology RTOG 1016): A Randomised, Multicentre, Non-Inferiority Trial. Lancet 2019, 393, 40–50. DOI: https://doi.org/10.1016/S0140-6736(18)32779-X
  5. Whiteside, T.L. The Tumor Microenvironment and Its Role in Promoting Tumor Growth. Oncogene 2008, 27, 5904–5912. DOI: https://doi.org/10.1038/onc.2008.271
  6. Seiwert, T.Y.; Fayette, J.; Cupissol, D.; et al. A Randomized, Phase II Study of Afatinib Versus Cetuximab in Metastatic or Recurrent Squamous Cell Carcinoma of the Head and Neck. Ann. Oncol. 2014, 25, 1813–1820. DOI: https://doi.org/10.1093/annonc/mdu216
  7. Schoenfeld, J.D.; Hanna, G.J.; Jo, V.Y.; et al. Neoadjuvant Nivolumab or Nivolumab Plus Ipilimumab in Untreated Oral Cavity Squamous Cell Carcinoma: A Phase 2 Open-Label Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1563–1570. DOI: https://doi.org/10.1001/jamaoncol.2020.2955
  8. Lydiatt, W.M.; Patel, S.G.; Sullivan, B.; et al. Head and Neck Cancers—Major Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J. Clin. 2017, 67, 122–137. DOI: https://doi.org/10.3322/caac.21389
  9. Chow, L.Q.M.; Haddad, R.; Gupta, S.; et al. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients with Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort. J. Clin. Oncol. 2016, 34, 3838–3845. DOI: https://doi.org/10.1200/JCO.2016.68.1478
  10. Gillison, M.L.; Akagi, K.; Xiao, W.; et al. Human Papillomavirus and the Landscape of Secondary Genetic Alterations in Oral Cancers. Genome Res. 2019, 29, 1–17.
  11. Chen, X.; Kang, R.; Kroemer, G.; et al. Broadening Horizons: The Role of Ferroptosis in Cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296. DOI: https://doi.org/10.1038/s41571-020-00462-0
  12. Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. DOI: https://doi.org/10.1038/s41580-020-00324-8
  13. Lei, G.; Zhuang, L.; Gan, B.; et al. Targeting Ferroptosis as a Vulnerability in Cancer. Nat. Rev. Cancer 2022, 22, 381–396. DOI: https://doi.org/10.1038/s41568-022-00459-0
  14. Wu, Y.; Chen, K.; Li, L.; et al. Plin2-Mediated Lipid Droplet Mobilization Accelerates Exit From Pluripotency by Lipidomic Remodeling and Histone Acetylation. Cell Death Differ. 2022, 29, 934–947. DOI: https://doi.org/10.1038/s41418-022-01018-8
  15. Li, H.; Jiang, W.; Zhang, S.R.; et al. The Platelet Pannexin 1–IL-1β Axis Orchestrates Pancreatic Ductal Adenocarcinoma Invasion and Metastasis. Oncogene 2023, 42, 1123–1135. DOI: https://doi.org/10.1038/s41388-023-02647-0
  16. Wang, X.; Shi, Y.; Shi, H.; et al. MUC20 Regulated by Extrachromosomal Circular DNA Attenuates Proteasome Inhibitor Resistance of Multiple Myeloma by Modulating Cuproptosis. J. Exp. Clin. Cancer Res. 2024, 43, 68. DOI: https://doi.org/10.1186/s13046-024-02972-6
  17. Babuharisankar, A.P.; Kuo, C.L.; Chou, H.Y.; et al. Mitochondrial Lon-Induced Mitophagy Benefits Hypoxic Resistance via Ca²⁺-Dependent FUNDC1 Phosphorylation at the ER–Mitochondria Interface. Cell Death Dis. 2023, 14, 199. DOI: https://doi.org/10.1038/s41419-023-05723-1
  18. Liu, J.; Kuang, F.; Kroemer, G.; et al. Autophagy-Dependent Ferroptosis: Machinery and Regulation. Cell Chem. Biol. 2020, 27, 420–435. DOI: https://doi.org/10.1016/j.chembiol.2020.02.005
  19. Yang, W.S.; Kim, K.J.; Gaschler, M.M.; et al. Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proc. Natl. Acad. Sci. 2016, 113, E4966–E4975. DOI: https://doi.org/10.1073/pnas.1603244113
  20. Tao, W.; Yufeng, L.; Qing, L.; et al. Cuproptosis-Related Gene FDX1 Expression Correlates with the Prognosis and Tumor Immune Microenvironment in Clear Cell Renal Cell Carcinoma. Front. Immunol. 2022, 13, 999823. DOI: https://doi.org/10.3389/fimmu.2022.999823
  21. Leemans, C.R.; Braakhuis, B.J.; Brakenhoff, R.H. The Molecular Biology of Head and Neck Cancer. Nat. Rev. Cancer 2011, 11, 9–22. DOI: https://doi.org/10.1038/nrc2982
  22. Hanna, G.J.; Lizotte, P.; Cavanaugh, M.; et al. Frameshift Events Predict Anti-PD-1/L1 Response in Head and Neck Cancer. JCI Insight 2018, 3, e98811. DOI: https://doi.org/10.1172/jci.insight.98811
  23. Liu, X.; Harbison, R.A.; Varvares, M.A.; et al. Immunotherapeutic Strategies in Head and Neck Cancer: Challenges and Opportunities. J. Clin. Invest. 2025, 135, e188128. DOI: https://doi.org/10.1172/JCI188128
  24. Jiang, M.; Qiao, M.; Zhao, C.; et al. Targeting Ferroptosis for Cancer Therapy: Exploring Novel Strategies From Its Mechanisms and Role in Cancers. Transl. Lung Cancer Res. 2020, 9, 1569–1584. DOI: https://doi.org/10.21037/tlcr-20-341
  25. Xu, R.; Peng, H.; Yang, N.; et al. Nuclear lncRNA CERNA1 Enhances Cisplatin-Induced Cell Apoptosis and Overcomes Chemoresistance via Epigenetic Activation of BCL2L10 in Ovarian Cancer. Genes Dis. 2023, 10, 10–13. DOI: https://doi.org/10.1016/j.gendis.2021.12.018
  26. Wen, Z.; Pei, B.; Dai, L.; et al. Risk Factors Analysis and Survival Prediction Model Establishment of Patients With Lung Adenocarcinoma Based on Different Pyroptosis-Related Gene Subtypes. Eur. J. Med. Res. 2023, 28, 601. DOI: https://doi.org/10.1186/s40001-023-01581-x
  27. Martinez-Reyes, I.; Chandel, N.S. Cancer Metabolism: Looking Forward. Nat. Rev. Cancer 2021, 21, 669–680. DOI: https://doi.org/10.1038/s41568-021-00378-6
  28. Currie, E.; Schulze, A.; Zechner, R.; et al. Cellular Fatty Acid Metabolism and Cancer. Cell Metab. 2013, 18, 153–161. DOI: https://doi.org/10.1016/j.cmet.2013.05.017
  29. Alqarihi, A.; Kontoyiannis, D.P.; Ibrahim, A.S. Mucormycosis in 2023: An Update on Pathogenesis and Management. Front. Cell. Infect. Microbiol. 2023, 13, 1254919. DOI: https://doi.org/10.3389/fcimb.2023.1254919
  30. Yang, K.; Wang, X.; Song, C.; et al. The Role of Lipid Metabolic Reprogramming in the Tumor Microenvironment. Theranostics. 2023, 13, 1774–1808. DOI: https://doi.org/10.7150/thno.82920
  31. Willis, S.; Day, C.L.; Hinds, M.G.; et al. The BCL-2-Regulated Apoptotic Pathway. J. Cell Sci. 2003, 116, 4053–4056. DOI: https://doi.org/10.1242/jcs.00754
  32. Osterlund, E.J.; Hirmiz, N.; Nguyen, D.; et al. Endoplasmic Reticulum Protein BIK Binds to and Inhibits Mitochondria-Localized Antiapoptotic Proteins. J. Biol. Chem. 2023, 299, 102863. DOI: https://doi.org/10.1016/j.jbc.2022.102863
  33. Quezada, M.J.; Picco, M.E.; Villanueva, M.B.; et al. BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers 2021, 13, 78. DOI: https://doi.org/10.3390/cancers13010078
  34. Lee, S.Y.; Kwon, J.; Lee, K.A. BCL2L10 Induces Metabolic Alterations in Ovarian Cancer Cells by Regulating the TCA Cycle Enzymes SDHD and IDH1. Oncol Rep. 2021, 45, 47. DOI: https://doi.org/10.3892/or.2021.7998
  35. Chen, L.; Ning, J.; Linghu, L.; et al. USP13 Facilitates a Ferroptosis-to-Autophagy Switch by Activation of the NFE2L2/NRF2–SQSTM1/p62–KEAP1 Axis Dependent on the KRAS Signaling Pathway. Autophagy 2025, 21, 565–582. DOI: https://doi.org/10.1080/15548627.2024.2410619
  36. Yang, Y.; Wang, Y.; Guo, L.; et al. Interaction Between Macrophages and Ferroptosis. Cell Death Dis. 2022, 13, 355. DOI: https://doi.org/10.1038/s41419-022-04775-z
  37. Hao, X.; Zheng, Z.; Liu, H.; et al. Inhibition of APOC1 Promotes the Transformation of M2 Into M1 Macrophages via the Ferroptosis Pathway and Enhances Anti-PD1 Immunotherapy in Hepatocellular Carcinoma Based on Single-Cell RNA Sequencing. Redox Biol. 2022, 56, 102463. DOI: https://doi.org/10.1016/j.redox.2022.102463
  38. Yu, Y.; Huang, X.; Liang, C.; et al. Evodiamine Impairs HIF1A Histone Lactylation to Inhibit Sema3A-Mediated Angiogenesis and PD-L1 by Inducing Ferroptosis in Prostate Cancer. Eur. J. Pharmacol. 2023, 957, 176007. DOI: https://doi.org/10.1016/j.ejphar.2023.176007
  39. Xu, W.; Li, Y.; Liu, L.; et al. Icaritin-Curcumol Activates CD8+ T Cells Through Regulation of Gut Microbiota and the DNMT1/IGFBP2 Axis to Suppress the Development of Prostate Cancer. J. Exp. Clin. Cancer Res. 2024, 43, 149. DOI: https://doi.org/10.1186/s13046-024-03063-2
  40. Chiu, K.; Bashir, S.T.; Nowak, R.A.; et al. Subacute Exposure to Di-Isononyl Phthalate Alters the Morphology, Endocrine Function, and Immune System in the Colon of Adult Female Mice. Sci. Rep. 2020, 10, 18788. DOI: https://doi.org/10.1038/s41598-020-75882-0
  41. Liu, F.; Pan, R.; Ding, H.; et al. UBQLN4 Is an ATM Substrate That Stabilizes the Anti-Apoptotic Proteins BCL2A1 and BCL2L10 in Mesothelioma. Mol. Oncol. 2021, 15, 3738–3752. DOI: https://doi.org/10.1002/1878-0261.13058