Article
by Siming Guo,
Jun Zhang,
Qi Liu,
Hongyun Li ,
Rongjie Wang,
Qianshan Fang,
Haiyi Cai ,
Hao Zou,
Jinmu Li,
24 January 2024
This research employs non-contact plantar 3D data scanning and gait analysis methodologies to establish a rehabilitation assistance system tailored for foot arch anomalies. The system utilizes a non-contact plantar 3D data model to mitigate dysfunctions within the plantar skeletal-muscular system. Its objectives include facilitating personalized remote diagnosis of foot arch anomalies, enabling patients to monitor their rehabilitation progress, and supporting at-home rehabilitation efforts. A dataset comprising 124 cases of physiological foot arch anomalies in adults aged 18 and above was collected and analyzed. The findings demonstrate the system’s flexibility, high spatial resolution, personalization, and innovation. Notably, the system achieves real-time measurement of positive pressure and shear force distribution at the plantar interface, facilitates the construction of accurate geometric models, and yields high-quality plantar three-dimensional coordinate data. This research contributes theoretical and technical underpinnings for the application of footwork anomaly diagnosis and correction.