Review

Immunotherapy for triple-negative breast cancer

Downloads

He, Y., & Wang, X. (2022). Immunotherapy for triple-negative breast cancer. Trends in Immunotherapy, 6(2). https://doi.org/10.24294/ti.v6.i2.1793

Authors

  • Yin He Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China.; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
  • Xiaosheng Wang
    Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China.; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China.; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China.

  

Keywords:

Triple-negative Breast Cancer Immunotherapy Immune Checkpoint Blockade

References

  1. Abbott M, Ustoyev Y. Cancer and the immune system: The history and background of immunotherapy. Seminars in Oncology Nursing 2019; 35(5): 150923. doi: 10.1016/j.soncn.2019.08.002.
  2. Furukawa F. The Nobel Prize in Physiology or Medicine 2018 was awarded to cancer therapy by inhibition of negative immune regulation. Trends in Immunotherapy 2018; 2(1). doi: 10.24294/ti.v2.i1.1065.
  3. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Experimental & Molecular Medicine 2018; 50(12): 1–11. doi: 10.1038/s12276-018-0191-1.
  4. Naimi A, Mohammed RN, Raji A, et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); The pros and cons. Cell Communication and Signaling 2022; 20(1): 1–31. doi: 10.1186/s12964-022-00854-y.
  5. Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018; 362(6411): eaar3593. doi: 10.1126/science.aar3593.
  6. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Molecular Cancer Therapeutics 2015; 14(4): 847–856. doi: 10.1158/1535-7163.MCT-14-0983.
  7. Allgauer M, Budczies J, Christopoulos P, et al. Implementing tumor mutational burden (TMB) analysis in routine diagnostics-a primer for molecular pathologists and clinicians. Translational Lung Cancer Research 2018; 7(6): 703–715. doi: 10.21037/tlcr.2018.08.14.
  8. Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Frontiers in Oncology 2019; 9: 396. doi: 10.3389/fonc.2019.00396.
  9. Haanen J. Converting cold into hot tumors by combining immunotherapies. Cell 2017; 170(6): 1055–1056. doi: 10.1016/j.cell.2017.08.031.
  10. Bense RD, Sotiriou C, Piccart-Gebhart MJ, et al. Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer. Journal of the National Cancer Institute 2017; 109(1): djw192. doi: 10.1093/jnci/djw192.
  11. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. Journal of Clinical Oncology 2013; 31(7): 860–867. doi: 10.1200/JCO.2011.41.0902.
  12. Wang X, Li M. Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunology 2019; 20(1): 1–
  13. doi: 10.1186/s12865-018-0285-5.
  14. Liu Z, Li M, Jiang Z, Wang X. A comprehensive immunologic portrait of triple-negative breast cancer. Translational Oncology 2018; 11(2): 311–329. doi: 10.1016/j.tranon.2018.01.011.
  15. Wang X, Guda C. Integrative exploration of genomic profiles for triple negative breast cancer identifies potential drug targets. Medicine (Baltimore) 2016; 95(30): e4321. doi: 10.1097/MD.0000000000004321.
  16. Liu Z, Jiang Z, Gao Y, et al. TP53 mutations promote immunogenic activity in breast cancer. Journal of Oncology 2019; 2019: 1–19. doi: 10.1155/2019/5952836.
  17. Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. Journal of Clinical Oncology 2016; 34(21): 2460–2467. doi: 10.1200/JCO.2015.64.8931.
  18. Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: Cohort B of the phase II KEYNOTE-086 study. Annals of Oncology 2019; 30(3): 405–411. doi: 10.1093/annonc/mdy518.
  19. Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Annals of Oncology 2019; 30(3): 397–404. doi: 10.1093/annonc/mdy517.
  20. Winer EP, Lipatov O, Im SA, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. The Lancet Oncology 2021; 22(4): 499–511. doi: 10.1016/S1470-2045(20)30754-3.
  21. Demaria S, Volm MD, Shapiro RL, et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clinical Cancer Research 2001; 7(10): 3025–3030.
  22. Kodumudi KN, Woan K, Gilvary DL, et al. A novel chemoimmunomodulating property of docetaxel: Suppression of myeloid-derived suppressor cells in tumor bearers. Clinical Cancer Research 2010; 16(18): 4583–4594. doi: 10.1158/1078-0432.CCR-10-0733
  23. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunology, Immunotherapy 2007; 56(5): 641–648. doi: 10.1007/s00262-006-0225-8.
  24. Kwa M, Li X, Novik Y, et al. Serial immunological parameters in a phase II trial of exemestane and low-dose oral cyclophosphamide in advanced hormone receptor-positive breast cancer. Breast Cancer Research and Treatment 2018; 168(1): 57–67. doi: 10.1007/s10549-017-4570-4.
  25. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. New England Journal of Medicine 2018; 379(22): 2108–2121. doi: 10.1056/NEJMoa1809615
  26. Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 2020; 21(1): 44–59. doi: 10.1016/S1470-2045(19)30689-8.
  27. Miles D, Gligorov J, Andre F, et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Annals of Oncology 2021; 32(8): 994–1004. doi: 10.1016/j.annonc.2021.05.801.
  28. Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. The Lancet 2020; 396(10265): 1817–1828. doi: 10.1016/S0140-6736(20)32531-9.
  29. Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. New England Journal of Medicine 2022; 387(3): 217–226. doi: 10.1056/NEJMoa2202809.
  30. Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. The Lancet 2020; 396(10257): 1090–1100. doi: 10.1016/S0140-6736(20)31953-X.
  31. Loibl S, Untch M, Burchardi N, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study. Annals of Oncology 2019; 30(8): 1279–1288. doi: https://doi.org/10.1093/annonc/mdz158.
  32. Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. New England Journal of Medicine 2020; 382(9): 810–821. doi: 10.1056/NEJMoa1910549.
  33. Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. New England Journal of Medicine 2022; 386(6): 556–567. doi: 10.1056/NEJMoa2112651.
  34. Gianni L, Huang CS, Egle D, et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Annals of Oncology 2022; 33(5): 534–543. doi: 10.1016/j.annonc.2022.02.004.
  35. Wolf DM, Yau C, Wulfkuhle J, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell 2022; 40(6): 609–623. doi: 10.1016/j.ccell.2022.05.005.
  36. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on immunogenomic profiling. Journal of Experimental & Clinical Cancer Research 2018; 37(1): 1–13. doi: 10.1186/s13046-018-1002-1.
  37. Li M, Zhang Z, Li L, Wang X. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Communications Biology 2020; 3(1): 1–19. doi: 10.1038/s42003-020-01230-7.