New Energy Exploitation and Application

Article

Design and Performance Analysis of Photovoltaic Solar Cells Using WSe2 as an Absorber Layer with SnS2 Electron Transport Layer

Downloads

Paul, I., Rayhan, A., & Khan, M. A. (2025). Design and Performance Analysis of Photovoltaic Solar Cells Using WSe2 as an Absorber Layer with SnS2 Electron Transport Layer. New Energy Exploitation and Application, 4(1), 83–101. https://doi.org/10.54963/neea.v4i1.990

Authors

  • Indrojit Paul

    Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
  • Abu Rayhan

    Department of Electrical and Electronic Engineering, R. P. Shaha University, Narayanganj 1400, Bangladesh
  • M. A. Khan

    Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh

Recent breakthroughs in solar cell technology have highlighted transition metal dichalcogenides, particularly tungsten diselenide (WSe₂), as exceptional absorber materials due to their remarkable optoelectronic properties. This study presents an innovative thin-film photovoltaic solar cell featuring Cu₂O-WSe₂-SnS₂ layers. Utilizing WSe₂ as the primary absorber, SnS₂ as the electron transport layer (ETL), and Cu₂O as the hole transport layer (HTL), this structure is engineered to maximize light absorption and carrier separation, enhancing energy efficiency. Key performance parameters, including power conversion efficiency (PCE), fill factor (FF), short-circuit current density (Jsc), and open-circuit voltage (Voc), were thoroughly evaluated. The impressive results—PCE of 25.76%, FF of 83.36%, Voc of 1.29 V, and Jsc of 23.84 mA/cm²—were achieved through meticulous simulation and experimental validation. Investigating defect densities at the SnS₂/WSe₂ and WSe₂/Cu₂O interfaces revealed that minimizing interfacial recombination significantly enhances charge extraction and overall performance. A comparative analysis confirmed SnS₂ as an optimal ETL due to superior electron mobility and minimal recombination. This optimized structure offers excellent efficiency and operational stability, providing crucial insights into the feasibility of WSe₂-based thin-film solar cells. Additionally, it advances our understanding of interfacial engineering in photovoltaics and underscores the role of WSe₂ in conjunction with Cu₂O and SnS₂. These findings contribute to ongoing research on high-efficiency thin-film solar cells, paving the way for further innovations in solar energy conversion technology.

Keywords:

Cu₂O-WSe₂-SnS₂; Solar cell; Fill factor; PCE; Absorber; ETL; HTL

References

  1. Kumar, C.M.S.; Singh, S.; Gupta , M.K.; et al. Solar Energy: A Promising Renewable Source for Meeting Energy Demand in Indian Agriculture Applications, Sustain. Energy Technol. Assess. 2023, 55, 102905. DOI: https://doi.org/10.1016/j.seta.2022.102905
  2. Nijsse, F.J.M.M.; Mercure, J.-F.; Ameli, N.; et al. The Momentum of the Solar Energy Transition. Nat. Commun. 2023, 14, 6542. DOI: https://doi.org/10.1038/s41467-023-41971-7
  3. Krishnan, N.; Kumar, K.R.; Inda, C.S. How Solar Radiation Forecasting Impacts the Utilization of Solar Energy: A Critical Review, J. Clean. Prod. 2023, 388, 135860. DOI: https://doi.org/10.1016/j.jclepro.2023.135860
  4. Patra, B.; Nema, P.; Khan, M.Z.; et al. Optimization of Solar Energy Using MPPT Techniques and Industry 4.0 Modelling. Sustainable Oper. Comput. 2023, 4, 22–28. Available online: https://www.sciencedirect.com/science/article/pii/S2666412722000265
  5. Benchrifa, M.; Mabrouki, J.; Elouardi, M.; et al. Detailed Study of Dimensioning and Simulating a Grid-Connected PV Power Station and Analysis of Its Environmental and economic Effect, Case Study. Model. Earth Syst. Environ. 2023, 9, 53–61. Available online: https://link.springer.com/article/10.1007/s40808-022-01457-9
  6. Panagoda, L.P.S.S.; Sandeepa, R.A.H.T.; Perera, W.A.V.T.; et al. Advancements in Photovoltaic (Pv) Technology for Solar Energy Generation. J. Res. Technol. Eng. 2023, 4, 30–72. Available online: https://www.jrte.org/wp-content/uploads/2023/07/Advancements-In-Photovoltaic-Pv-Technology-for-Solar-Energy-Generation.pdf
  7. Maalouf, A.; Okoroafor, T.; Jehl, Z.; et al. A Comprehensive Review on Life Cycle Assessment of Commercial and Emerging Thin-Film Solar Cell Systems. Renew. Sustain. Energy Rev. 2023, 186, 113652. Available online: https://www.sciencedirect.com/science/article/pii/S1364032123005099
  8. Buonomenna, M. Inorganic Thin-Film Solar Cells: Challenges at the Terawatt-Scale. Symmetry 2023, 15, 1718. Available online: https://www.mdpi.com/2073-8994/15/9/1718
  9. Bonomo, P.; Frontini, F.; Loonen, R.; et al. Reinders, Comprehensive Review and State of Play in the Use of Photovoltaics in Buildings. Energy Build. 2024, 323, 114737. DOI: https://doi.org/10.1016/j.enbuild.2024.114737
  10. Taşer, A.; Koyunbaba, B.K.; Kazanasmaz, T. Thermal, Daylight, and Energy Potential of Building-integrated Photovoltaic (BIPV) Systems: A Comprehensive Review of Effects and Developments. Sol. Energy 2023, 251, 171–196. DOI: https://doi.org/10.1016/j.solener.2022.12.039
  11. Chen, S.; Fu, Y.; Ishaq, M.; et al. Carrier Recombination Suppression and Transport Enhancement Enable High‐Performance Self‐Powered Broadband Sb2Se3 Photodetectors. InfoMat 2023, 5, e124000. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/inf2.12400
  12. Shahbaz, I.; Tahir, M.; Li, L.; et al. Advancements in 2D Transition Metal Dichalcogenides (TMDs) Inks for Printed Optoelectronics: A Comprehensive Review. Mater. Today 2024, 77, 142–184. Available online: https://www.sciencedirect.com/science/article/pii/S136970212400110X
  13. Berni, A.; García-Guzmán, J.J.; Alcántara, R.; et al. Rapid and Eco-Friendly Ultrasonic Exfoliation of Transition Metal Dichalcogenides Supported on Sonogel-Nanocarbon Black: A Non-Precious Electrocatalyst for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2024, 90, 690–700. Available online: https://www.sciencedirect.com/science/article/pii/S0360319924042216
  14. Li, R.; Liu, X.; Chen, J. Opportunities and Challenges of Hole Transport Materials for High‐Performance Inverted Hybrid‐Perovskite Solar Cells. Exploration 2023, 3, 20220027. DOI: https://doi.org/10.1002/EXP.20220027
  15. Park, J.H.; Hwang, S.K.; Ji, S.G.; et al. Characterization of Various Tandem Solar Cells: Protocols, Issues, and Precautions. Exploration 2023, 3, 20220029. DOI: https://doi.org/10.1002/EXP.20220029
  16. Khan, M.A., Johora, F.T.A., Asad, A., et al. Effect of Defect Density Variation in CdTe Solar Cell Using Cu as A Hole Transport Layer and Back Contact. IJEEAS 2024, 7. DOI: https://doi.org/10.54554/ijeeas.2024.7.02.009
  17. Bahadur, A., Saeed, A., Iqbal, S., et al., Morphological and magnetic properties of BaFe12O19 nanoferrite: A promising microwave absorbing material. Ceram. Int. 2017, 43, 7346–7350. DOI: https://doi.org/10.1016/j.ceramint.2017.03.039
  18. Shimul, A.I., Khan, M.A., Rayhan, A., et al. Machine Learning‐Based Optimization and Performance Enhancement of CH3 NH3 SnBr3 Perovskite Solar Cells with Different Charge Transport Materials Using SCAPS‐1D and wxAMPS. Adv. Theory Simul. 2025, 2500182. DOI: https://doi.org/10.1002/adts.202500182
  19. Sajid, M.; Qamar, M.A.; Farhan, A.; et al. Emerging Paradigms in Two-Dimensional Materials: Classification, Synthesis, and the Role of Defects in Electrocatalysis for Water Splitting and Oxygen Reduction Reaction. J. Environ. Chem. Eng. 2024, 12, 113784. DOI: https://doi.org/10.1016/j.jece.2024.113784
  20. Shreya; Phogat, P.; Jha, R.; et al. Emerging Advances and Future Prospects of Two Dimensional Nanomaterials Based Solar Cells. J. Alloys Compd. 2024, 1001, 175063. DOI: https://doi.org/10.1016/j.jallcom.2024.175063
  21. Farag, A.A.M.; Roushdy, N.; Badran, A.-S.; et al. A Comprehensive Investigation of the Synthesis, Spectral, DFT, and Optical Properties of a Novel Oxadiazolyl-Pyrano[3,2-c]Quinoline for Photosensor Applications, J. Mol. Struct. 2024, 1318, 139387. DOI: https://doi.org/10.1016/j.molstruc.2024.139387
  22. Li, S.; Xu, M.; Guo, Z.; et al. High Current Density Heterojunction Bipolar Transistors with 3D-GaN/2D-WSe2 as Emitter Junctions. Mater. Horiz. 2024. DOI: https://doi.org/10.1039/D4MH01456A
  23. Aftab, S.; Goud, B.S.; Mukhtar M.; et al. Perovskite Photovoltaics with Cutting-Edge Strategies in 2D TMDs-Based Interfacial Layer Optimization. Mater. Today Sustainability 2024, 28, 100982. DOI: https://doi.org/10.1016/j.mtsust.2024.100982
  24. Tiwari, P.; Patel, K.; Krishnia, L.; et al. Potential Application of Multilayer N-Type Tungsten Diselenide (WSe2) Sheet as Transparent Conducting Electrode in Silicon Heterojunction Solar Cell. Comput. Mater. Sci. 2017, 136, 102–108. DOI: https://doi.org/10.1016/j.commatsci.2017.04.026
  25. Gautam, S.; Patel, A.K.; Mishra, R.; et al. Performance Analysis of WSe2 Solar Cell with Cu2O Hole Transport Layer by Optimization of Electrical and Optical Properties. J. Comput. Electron. 2022, 21, 1373–1385. DOI: https://doi.org/10.1007/s10825-022-01941-6
  26. Wei, M.; Xiao, K.; Walters, G.; et al. Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Adv. Mater. 2020, 32(12), 1907058. DOI: https://doi.org/10.1002/adma.201907058
  27. Zhang, W.; Guo, X.; Cui, Z.; et al. Strategies for Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Adv. Mater. 2024, 36, 2311025. DOI: https://doi.org/10.1002/adma.202311025
  28. Rayhan, A.; Khan, M.A.; Islam, R. Enhancing CsSn0.5Ge0.5I3 Perovskite Solar Cell Performance via Cu2O Hole Transport Layer Integration. Int. J. Photoenergy 2024. Available online: https://onlinelibrary.wiley.com/doi/10.1155/2024/8859153
  29. Li, Z. SNU Open Repository and Archive: Study of Cu₂O Thin Film Transistor and Oxide Semiconductor Negative Differential Transconductance Device for Logic Circuits. PhD thesis, Seoul National University, Seoul, Korea. (in Korean). Available online: https://s-space.snu.ac.kr/handle/10371/210282
  30. Kotnala, R.K.; Kaushik, A.S.; Subramanian, S.S.; et al. Advanced Functional Materials for Sustainable Environments; Springer Nature: New York, NY, USA, 2024.
  31. Xie, W.; Du, C.; Ding, Y.; et al. Numerical Investigation on the Performance of Heterojunction Solar Cells with Cu2O as the Hole Transport Layer and Cu2MoSnS4 as the Absorption Layer. Phys. Lett. A 2024, 528, 130029. DOI: https://doi.org/10.1016/j.physleta.2024.130029
  32. Kumar, V.; Masudy-Panah, S.; Tan, C.C.; et al. Copper Oxide Based Low Cost Thin Film Solar cells. In Proceedings of the 2013 IEEE 5th International Nanoelectronics Conference (INEC), Singapore, 2013. DOI: https://doi.org/10.1109/INEC.2013.6466072
  33. Yang, R.; Zhang, X.; Chen, B.; et al. Tunable Backbone-Degradable Robust Tissue Adhesives via in Situ Radical Ring-Opening Polymerization. Nat. Commun. 2023, 14, 6063. Available online: https://www.nature.com/articles/s41467-023-41610-1
  34. Zhang, H.; Chang, J.; Zhang, R.; et al. Enhanced Sub-ppm NO₂-Sensing Properties of SnS₂ Sheet Flowers Decorated with Au Nanoparticles at Near Room Temperature. IEEE Sens. J. 2022, 22, 22127–22133. Available online: https://ieeexplore.ieee.org/abstract/document/9906821
  35. Li, M.; Gao, X.; Zhang, Y.; et al. Ammonia Sensing Properties of SnS₂/SnO₂ Nanocomposite-Based Gas Sensor by SnS₂ Annealing. IEEE Sens. J. 2022, 22, 23456–23463. Available online: https://ieeexplore.ieee.org/abstract/document/9930937
  36. Gedi, S.; Reddy, V.R.M.; Pejjai, B.; et al. A Facile Inexpensive Route for SnS Thin Film Solar Cells with SnS2 Buffer. Appl. Surf. Sci. 2016, 372, 116–124. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0169433216304688?via%3Dihub
  37. Yao, K.; Shan, S.; Jia, Q. One-step Synthesis of Urchinlike SnS/SnS2 Heterostructures with Superior Visible-Light Photocatalytic Performance. Catal. Commun. 2017, 101, 51–56. Available online: https://www.sciencedirect.com/science/article/pii/S1566736717303205?via%3Dihub
  38. Mahmud, S.T.; Mia, R.; Mahmud, S.; et al. Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review. Nanomaterials 2022, 12, 1246. Available online: https://www.mdpi.com/2079-4991/12/8/1246
  39. Anucha, C.B.; Altin, I.; Bacaksiz, E.; et al. Titanium Dioxide (TiO₂)-Based Photocatalyst Materials Activity Enhancement for Contaminants of Emerging Concern (CECs) Degradation: In the Light of Modification Strategies. Chem. Eng. J. Adv. 2022, 10, 100262. Available online: https://www.sciencedirect.com/science/article/pii/S2666821122000230
  40. Cao, Y.; Li, S.; Lv, C.; et al. Experimental Demonstration of Angle-Dependent GMR Effect in Py/WSe₂/Co Spin Valve Structure. IEEE Trans. Electron. Dev. 2021, 68, 3690–3695. DOI: https://doi.org/10.1109/TED.2021.3082500
  41. Wang, Y.; Fang, X.; Sun, L. Enhanced Responsivity of WSe2 Phototransistor Using Au Nanoparticles. In Proceedings of the International Conference on Optoelectronic Materials and Devices (ICOMD 2024), Chongqing, China, Mar. 2025. DOI: https://doi.org/10.1117/12.3058817
  42. Sharma, A.; Varshney, U.; Gupta, G. Light Stimulation Enhanced Detection of NO at ppb-Level at Room Temperature Using MoS2 /WSe2 /GaN Heterostructure Sensor. J. Mater. Chem. A 2025, 13, 8484–8496. DOI: https://doi.org/10.1039/D4TA09078K
  43. Kasi, G.; Thanakkasaranee, S.; Stalin, N.; et al. Enhancement of Antimicrobial Properties and Cytocompatibility Through Silver and Magnesium Doping Strategies on Copper Oxide Nanocomposites. J. Alloys Compd 2024, 1007, 176481. DOI: https://doi.org/10.1016/j.jallcom.2024.176481
  44. Maslov, A.D.; Litvinov, V.G.; Ermachikhin, A.V.; et al. Investigation of Recombination Centers in the active Layers of HIT Solar Cells. In Proceedings of the 2020 ELEKTRO, Taormina, Italy, 2020. Available online: https://ieeexplore.ieee.org/document/9130315
  45. Chen, M.; Ishaq, M.; Ren, D.; et al. Interface Optimization and Defects Suppression via NaF Introduction Enable Efficient Flexible Sb2Se3 Thin-Film Solar Cells. J. Energy Chem. 2024, 90, 165–175. Available onlne: https://www.sciencedirect.com/science/article/abs/pii/S2095495623006484
  46. Li, F.; Jen, A.K.-Y. Interface Engineering in Solution-Processed Thin-Film Solar Cells. Acc. Mater. Res. 2022, 3, 272–282. DOI: https://doi.org/10.1021/accountsmr.1c00169
  47. Ma, S.; Du, D.X.; Gao, C.; et al. Improving the Performance of Industrial TOPCon Solar Cells Through The Insertion of Intrinsic a-Si Layer. Sol. Energy Mater. Sol. Cells 2024, 275, 113024. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0927024824003362
  48. Liu, Y.; Qin, H.; Peng, C.; et al. Boosting the Responsivity of Amorphous-Ga2O3 Solar-Blind Photodetector via Organosilicon Surface Passivation. Appl. Phys. Lett. 2024, 124, 082102. Available online: https://pubs.aip.org/aip/apl/article-abstract/124/8/082102/3266292/Boosting-the-responsivity-of-amorphous-Ga2O3-solar?redirectedFrom=fulltext
  49. Li, W.; Wang, G.; Long, Y.; et al. BCP Buffer Layer Enables Efficient and Stable Dopant-Free P3HT Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 63019–63025. Available online: https://pubs.acs.org/doi/abs/10.1021/acsami.4c15050
  50. Mohamad Noh, M.F.; Arzaee, N.A.; Fat, C.C.; et al. Perovskite/CIGS Tandem Solar Cells: Progressive Advances from Technical Perspectives. Mater. Today Energy 2024, 39, 101473. DOI: https://doi.org/10.1016/j.mtener.2023.101473
  51. Rawat, S.; Gupta, R.; Gohri, S. Performance Assessment of CIGS Solar Cell with Different CIGS Grading Profile. Mater. Today Proc. 2023, S2214785323014025. DOI: https://doi.org/10.1016/j.matpr.2023.03.356
  52. Bai, H.; Qian, G.; Liang, Q.; et al. Tuning Electronic and Optical Properties of Two-Dimensional Vertical van der Waals Blue Phosphorene/SnS2 Heterostructure by Strain and Electric Field. Comput. Mater. Sci. 2024, 238, 112948. DOI: https://doi.org/10.1016/j.commatsci.2024.112948
  53. Zhou, Y.; Mu, H.; Zhang, C.; et al. SnS2/WSe2 van der Waals Single-Detector Spectrometer with a Dynamically Selecting Spectral Reconstruction Strategy. IEEE Electron. Dev. Lett. 2025, 1. DOI: https://doi.org/10.1109/LED.2025.3545960
  54. Haque, M.D., Ali, M.H., Islam, A.Z.M.T. Efficiency enhancement of WSe2 heterojunction solar cell with CuSCN as a hole transport layer: A numerical simulation approach. Sol. Energy 2021, 230, 528–537. DOI: https://doi.org/10.1016/j.solener.2021.10.054.