New Energy Exploitation and Application

Article

The Influences of Adsorption Mechanism of Linear and Branched Alkanes Liquid Contacting Face-Centered Cubic Lattice on Heat Transport

solid-liquid interfaces; adsorption mechanism; alkane liquid; molecular dynamics simulations

Downloads

SALEMAN, A. R., MD DAUD, N., SUDIN, M. N., ZAKARIA, M. S., MOHD ROSLI, M. A., & MANSHOOR, B. (2024). The Influences of Adsorption Mechanism of Linear and Branched Alkanes Liquid Contacting Face-Centered Cubic Lattice on Heat Transport: solid-liquid interfaces; adsorption mechanism; alkane liquid; molecular dynamics simulations. New Energy Exploitation and Application, 3(2). https://doi.org/10.54963/neea.v3i2.330

Authors

  • ABDUL RAFEQ SALEMAN
    DR
  • NAZRI MD DAUD Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka
  • MOHD NIZAM SUDIN Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka
  • MOHAMAD SHUKRI ZAKARIA Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka
  • MOHD AFZANIZAM MOHD ROSLI Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka
  • BUKHARI MANSHOOR Fakulti Kejuruteraan Mekanikal dan Pembuatan, Universiti Tun Hussien Onn Malaysia

In tribology studies, the interaction between solid and liquid surfaces is a common focus, with particular attention given to wear rates and surface scars. These wear and scar issues are analyzed through adsorption mechanisms. A key factor in these problems is the orientation of the liquid on solid surfaces, which requires an in-depth examination of molecular orientations. This study aims to investigate the adsorption mechanisms of liquids on solid surfaces by analyzing structural quantities such as density and orientation order parameters. The research employs molecular dynamics simulations to model a gold solid with face-centered cubic (FCC) (100) surfaces in contact with three different alkanes (pentane, heptane, and 3-ethylpentane). The simulations are conducted at a uniform temperature set at 0.7 of the liquid's critical temperature. Results indicate that liquids with linear molecular structures exhibit higher adsorption behavior compared to those with branched structures, which affects heat transfer near the contact interfaces. Further research is needed to explore how the surface structure of the solid affects these interactions.

Keywords:

Solid-Liquid Interfaces; Adsorption Mechanism; Alkane Liquid; Molecular Dynamics Simulations.

References

  1. A. R. bin Saleman, H. K. Chilukoti, G. Kikugawa, and T. Ohara, “A molecular dynamics study on the thermal rectification effect at the solid–liquid interfaces between the face-centred cubic (FCC) of gold (Au) with the surfaces of (100), (110) and (111) crystal planes facing the liquid methane (CH4),” Mol Simul, vol. 45, no. 1, pp. 68–79, 2019, doi: 10.1080/08927022.2018.1535177.
  2. J. M. G. Sousa, a. L. Ferreira, and M. a. Barroso, “Determination of the solid-fluid coexistence of the n - 6 Lennard-Jones system from free energy calculations,” Journal of Chemical Physics, vol. 136, no. 2012, 2012, doi: 10.1063/1.4707746.
  3. K. Holmberg and A. Erdemir, “Influence of tribology on global energy consumption, costs and emissions,” Friction, vol. 5, no. 3, pp. 263–284, 2017, doi: 10.1007/s40544-017-0183-5.
  4. L. Dai, N. Satyanarayana, S. K. Sinha, and V. B. C. Tan, “Analysis of PFPE lubricating film in NEMS application via molecular dynamics simulation,” Tribol Int, vol. 60, pp. 53–57, 2013, doi: 10.1016/j.triboint.2012.10.021.
  5. A. R. bin Saleman, H. K. Chilukoti, G. Kikugawa, M. Shibahara, and T. Ohara, “A molecular dynamics study on the thermal transport properties and the structure of the solid–liquid interfaces between face centered cubic (FCC) crystal planes of gold in contact with linear alkane liquids,” Int J Heat Mass Transf, vol. 105, pp. 168–179, Feb. 2017, doi: 10.1016/j.ijheatmasstransfer.2016.09.069.
  6. H. Al-Maliki, L. Zsidai, P. Samyn, Z. Szakál, R. Keresztes, and G. Kalácska, “Effects of atmospheric plasma treatment on adhesion and tribology of aromatic thermoplastic polymers,” Polym Eng Sci, vol. 58, 2018, doi: 10.1002/pen.24689.
  7. Y. Sun, “Surface Engineering & Coating Technologies for Corrosion and Tribocorrosion Resistance,” Jul. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ma16134863.
  8. W. R. V. Sampaio et al., “Influence of using different titanium cathodic cage plasma deposition configurations on the mechanical, tribological, and corrosion properties of AISI 304 stainless steel,” Surf Coat Technol, vol. 475, 2023, doi: 10.1016/j.surfcoat.2023.130149.
  9. X. Liu et al., “A molecular dynamics study of thermal boundary resistance over solid interfaces with an extremely thin liquid film,” Int J Heat Mass Transf, vol. 147, p. 118949, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.118949.
  10. T. Q. Vo, B. S. Park, C. H. Park, and B. H. Kim, “Nano-scale liquid film sheared between strong wetting surfaces: effects of interface region on the flow,” Journal of Mechanical Science and Technology, vol. 29, no. 4, pp. 1681–1688, 2015, doi: 10.1007/s12206-015-0340-6.
  11. D. T. Ta, A. K. Tieu, H. T. Zhu, and B. Kosasih, “Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure,” J Chem Phys, vol. 143, no. 16, p. 164702, 2015, doi: 10.1063/1.4933203.
  12. A. Rafeq et al., “Comparison of the characteristic of heat transport between non-shear and shear systems at solid-liquid ( S-L ) interfaces,” no. May, pp. 270–272, 2018.
  13. A. R. Saleman et al., “Heat Transport at Solid-Liquid Interfaces between Face-Centered Cubic Lattice and Liquid Alkanes,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage, vol. 44, pp. 123–130, 2018, [Online]. Available: www.akademiabaru.com/arfmts.html
  14. R. C. Lincoln, K. M. Koliwad, and P. B. Ghate, “Morse-potentials evaluations of second and third order elastic constants of some cubic metals,” Phys Rev, vol. 157, pp. 463–466, 1967, doi: http://dx.doi.org/10.1103/PhysRev.157.463.
  15. L. a. Girifalco and V. G. Weizer, “Application of the morse potential function to cubic metals,” Physical Review, vol. 114, no. 3, pp. 687–690, 1959, doi: 10.1103/PhysRev.114.687.
  16. H. K. Chilukoti, G. Kikugawa, and T. Ohara, “Structure and Mass Transport Characteristics at the Intrinsic Liquid-Vapor Interfaces of Alkanes,” Journal of Physical Chemistry B, vol. 120, no. 29, pp. 7207–7216, 2016, doi: 10.1021/acs.jpcb.6b05332.
  17. S. K. Nath and R. Khare, “New forcefield parameters for branched hydrocarbons,” Journal of Chemical Physics, vol. 115, no. 23, pp. 10837–10844, 2001, doi: 10.1063/1.1418731.
  18. H. Matsubara, G. Kikugawa, T. Bessho, S. Yamashita, and T. Ohara, “Effects of molecular structure on microscopic heat transport in chain polymer liquids,” Journal of Chemical Physics, 2015, doi: 10.1063/1.4919313.
  19. B. Le Neindre et al., “Thermal conductivity of gaseous and liquid n-pentane,” Fluid Phase Equilib, vol. 460, pp. 146–154, Mar. 2018, doi: 10.1016/j.fluid.2017.12.026.
  20. J. Ilja Siepmann and M. G. Martin, “Intermolecular potentials for branched alkanes and the vapour-liquid phase equilibria of n-heptane, 2-methylhexane, and 3-ethylpentane,” Mol Phys, vol. 90, no. 5, pp. 687–694, Apr. 1997, doi: 10.1080/002689797172048.
  21. H. Watanabe, “Thermal conductivity and thermal diffusivity of sixteen isomers of alkanes: CnH2n+2 (n = 6 to 8),” J Chem Eng Data, vol. 48, no. 1, pp. 124–136, Jan. 2003, doi: 10.1021/je020125e.
  22. A. R. b. Saleman, H. K. Chilukoti, G. Kikugawa, M. Shibahara, and T. Ohara, “A molecular dynamics study on the thermal energy transfer and momentum transfer at the solid-liquid interfaces between gold and sheared liquid alkanes,” International Journal of Thermal Sciences, vol. 120, pp. 273–288, 2017, doi: 10.1016/j.ijthermalsci.2017.06.014.
  23. T. Ohara and D.Suzuki, “Intermolecular energy transfer at a solid-liquid interface,” Microscale Thermophysical Engineering, vol. 4, pp. 189–196, 2000, doi: 10.1080/10893950050148142.
  24. O. Kum, “Orientation effects in shocked nickel single crystals via molecular dynamics,” J Appl Phys, vol. 93, no. 6, pp. 3239–3247, 2003, doi: 10.1063/1.1554489.
  25. H. K. Chilukoti, G. Kikugawa, and T. Ohara, “Mass transport and structure of liquid n-alkane mixtures in the vicinity of α-quartz substrates,” RSC Adv., vol. 6, no. 102, pp. 99704–99713, 2016, doi: 10.1039/C6RA22398B.