Topological Vulnerability Analysis of the Mexican Power Grid Using Complex Network Theory


Rivas-Dávalos, F., Sánchez-Jaime, J., & Tovar-Hernández, J.-H. (2024). Topological Vulnerability Analysis of the Mexican Power Grid Using Complex Network Theory. New Energy Exploitation and Application, 3(1), 143–157.


  • Francisco Rivas-Dávalos
    Tecnológico Nacional de México / Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Morelia, Michoacán 58120, México
  • Jorge Sánchez-Jaime Tecnológico Nacional de México / Instituto Tecnológico de Toluca, Av Tecnológico 100-s/n, Agrícola, Metepec, 52149, México
  • José-Horacio Tovar-Hernández Tecnológico Nacional de México / Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Morelia, Michoacán 58120, México

This study presents a pioneering analysis of the network properties within the Mexican power grid (MXPG). The study included the 400 kV and 230 kV grids. Both grids were analysed independently and as a single combined grid. Based on complex network theory, several topological metrics were calculated, and the vulnerability of the power grid to random failures and intentional attacks was investigated. The MXPG displays several features of small-world networks, namely, a large clustering coefficient and a small average shortest path length. The degree distribution reveals exponential behaviour. Additionally, it was found that the power grid is more vulnerable to targeted attacks on nodes with a high degree than to random failures. In general terms, this study illuminates the intricate structure of the Mexican power grid, shedding light on its structural vulnerabilities, crucial for informing future strategies aimed at enhancing its robustness against potential disruptions.


complex network topology vulnerability


  1. Abedi, A.; Gaudard, L.; Romerio, F. Review of Major Approaches to Analyse Vulnerability in Power System. Reliab. Eng. Syst. Saf. 2019, 183, 153–172.
  2. Amani, A.M.; Jalili, M. Power Grids as Complex Networks: Resilience and Reliability Analysis. IEEE Access 2021, 9, 119010–119031.
  3. Zang, T.; Wang, Z.; Wei, X.; Zhou, Y.; Wu, J.; Zhou, B. Current Status and Perspective of Vulnerability Assessment of Cyber-Physical Power Systems Based on Complex Network Theory. Energies 2023, 16, 6509.
  4. Rosato, V.; Bologna, S.; Tiriticco, F. Topological Properties of High-Voltage Electrical Transmission Networks. Electr. Power Syst. Res. 2007, 77, 99–105.
  5. Watts, D.J.; Strogatz, S.H. Collective Dynamics of ‘Small-World’ Networks. Nature 1998, 393, 440–442.
  6. Kinney, R.; Crucitti, P.; Albert, R.; Lator, V. Modelling Cascading Failures in the North American Power Grid. Eur. Phys. J. B 2005, 46, 101–107.
  7. Hines, P.; Cotilla-Sanchez, E.; Blumsack, S. Do Topological Models Provide Good Information about Electricity Infrastructure Vulnerability? Chaos 2010, 20, 033122.
  8. Crucitti, P.; Latora, V.; Marchiori, M. A Topological Analysis of the Italian Electric Power Grid. Phys. A 2004, 338, 92–97.
  9. Holmgren, Å.J. Using Graph Models to Analyse the Vulnerability of Electric Power Networks. Risk Anal. 2006, 26, 955–969.
  10. Barabási, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512.
  11. Wu, D.; Ma, F.; Javadi, M.; Thulasiraman, K.; Bompard, E.; Jiang, J.N. A Study of the Impacts of Flow Direction and Electrical Constraints on Vulnerability Assessment of Power Grid Using Electrical Betweenness Measures. Phys. A 2017, 466, 295–309.
  12. Amara, L.A.N.; Scala, A.; Barthelemy, M.; Stanley, H.E. Classes of Small-World Networks. Proc. Natl. Acad. Sci. USA 2000, 97, 11149–11152.
  13. Albert, R.; Albert, I.; Nakarado, G.L. Structural Vulnerability of the North American Power Grid. Phys. Rev. E 2004, 69, 025103.
  14. Rosas-Casals, M.; Valverde, S.; Solé, R.V. Topological Vulnerability of the European Power Grid Under Errors and Attacks. Int. J. Bifurc. Chaos 2007, 17, 2465–2475.
  15. Mei, S.; Zhang, X.; Cao, M. Power Grid Complexity; Springer: Berlin, Germany, 2011.
  16. The Force of Nature in Mexico, as seen from space, 2015. World Space Week 2015 Exhibition. Available online: (accessed on 22 February 2024).
  17. Estrada, E. Adjacency Relations in Networks. In The Structure of Complex Networks: Theory and Applications; Oxford University Press: New York, USA, 2011; Chapter 2, Section 2.2, pp. 27–30.
  18. Fang, Y. Critical Infrastructure Protection by Advanced Modelling, Simulation and Optimization for Cascading Failure Mitigation and Resilience. Ph.D. Dissertation, Ecole Centrale Paris, Paris, French, 2 February 2015.
  19. Espejo, R.; Lumbrera, S.; Ramos, A. Analysis of Transmission-Power-Grid Topology and Scalability, the European Case Study. Phys. A 2018, 509, 383–395.
  20. Monfared, M.A.S.; Jalili, M.; Alipour, Z. Topology and Vulnerability of the Iranian Power Grid. Phys. A 2014, 406, 24–33.
  21. Secretaría de Energía. Programa de Desarrollo del Sistema Eléctrico Nacional 2017–2031 (PRODESEN 2017-2031). Available online: (accessed on 12 December 2023).
  22. Fu, Y.; Ge, M.; Fan, Y.; Sun, X.; Zou, X.; Chen, Z. Identification of Critical Nodes in Power Grid Based on Node Traffic Importance Degree. Mod. Electr. Power 2018, 35, 1–8.
  23. Power System Restoration Using Closeness Centrality and Degree of a Node. In Cigre Egypt 2019, Abbasia, Cairo, Egypt, 6–8 March 2019.
  24. Costa, L.D.F.; Oliveira Jr, O.N.; Travieso, G.; Rodrigues, F.A.; Villas Boas, P.R.; Antiqueira, L.; Correa Rocha, L.E. Analysing and Modelling Real-World Phenomena with Complex Networks: A Survey of Applications. Adv. Phys. 2011, 60, 329–412.
  25. On the Evolution of Random Graphs. Available online: (accessed on 15 February 2024).