Single Index of Ballast Water Quality

Journal of Hydrological Ecology and Water Security

Article

Single Index of Ballast Water Quality

Nath Chakrabartty, S. (2025). Single Index of Ballast Water Quality. Journal of Hydrological Ecology and Water Security, 1(1), 19–28. https://doi.org/10.54963/jhews.v1i1.1417

Authors

  • Satyendra Nath Chakrabartty

    Indian Ports Association, Indian Statistical Institute, Flat 4B, Cleopatra, DC 258, Street No. 350, Action Area 1, New Town, Kolkata 700156, India

Received: 10 February 2025; Revised: 28 March 2025; Accepted: 7 April 2025; Published: 14 April 2025

Ballast water (BW) to maintain a ship’s stability carries multitude of aquatic invasive species and poses serious threat to the ecosystems at destination ports. To minimize transfer of harmful aquatic organisms and pathogens at the global level, Ballast Water Treatment Systems (BWTS) were introduced along with the recommendation of IMO standards (Regulation D-2), where indicators are in ratios. However, observations across samples from the same ballast tank are not additive like average speed of cars. The paper describes an index of overall quality of treated BW by multiplicative aggregation of the indicators of viable organisms and specific microbes. The index value  indicates compliance of D-2 standard across all the indicators. The index satisfies desirable properties, including statistical test of the equality of means of two sample GMs (SGMs). Identification of critical indicators and confidence interval around mean SGM, giving a range of index values indicating compliance, are novelties of the paper. The proposed index can be decomposed into the Index of Viable Organisms and the Index of Specific Microbes, facilitating the computation of relative importance. A separate index of physical and chemical factors can be computed by multiplicative aggregation. Empirical linear relationships can be fitted with each proposed index as dependent variable and ratio of value of variables in a year ( and base year ( as independent variables. Empirical verifications are planned to highlight salient features of the proposed indices along with the efficiency of different filtration units associated with BWTS.

Keywords:

Ballast Water Management System D-2 Standards Probability Distribution Multiplicative Aggregation Confidence Interval Compliance

References

  1. Ruiz, G.M.; Fofonoff, P.W.; Carlton, J.T.; et al. Invasion of Coastal Marine Communities in North America: Apparent Patterns, Processes, and Biases. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 389–422. DOI: https://doi.org/10.1146/annurev-ecolsys-102209-144647
  2. Gioria, M.; Hulme, P.E.; Richardson, D.M.; et al. Why Are Invasive Plants Successful? Annu. Rev. Plant Biol. 2023, 74, 635–670. DOI: https://doi.org/10.1146/annurev-arplant-070522-071021
  3. Wan, Z.; Chen, J.; Makhloufi, A.E.; et al. Four Routes to Better Maritime Governance. Nature 2016, 540, 27–29. DOI: https://doi.org/10.1038/540027a
  4. Gerhard, W.A.; Gunsch, C.K. Metabarcoding and Machine Learning Analysis of Environmental DNA in Ballast Water Arriving to Hub Ports. Environ. Int. 2019, 124, 312–319. DOI: https://doi.org/10.1016/j.envint.2018.12.038
  5. Hess-Erga, O.K.; Moreno-Andrés, J.; Enger, O.; et al. Microorganisms in Ballast Water: Disinfection, Community Dynamics, and Implications for Management. Sci. Total Environ. 2019, 657, 704–716. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.004
  6. Baker-Austin, C.; Oliver, J.D.; Alam, M.; et al. Vibrio spp. Infections. Nat. Rev. Dis. Primers 2018, 4, 1–19. DOI: https://doi.org/10.1038/s41572-018-0005-8
  7. Jang, J.; Hur, H.G.; Sadowsky, M.J.; et al. Environmental Escherichia coli: Ecology and Public Health Implications—A Review. J. Appl. Microbiol. 2017, 123, 570–581. DOI: https://doi.org/10.1111/jam.13468
  8. Diagne, C.; Leroy, B.; Vaissière, A.C.; et al. High and Rising Economic Costs of Biological Invasions Worldwide. Nature 2021, 592, 571–576. DOI: https://doi.org/10.1038/s41586-021-03405-6
  9. Amidi, R.; Fatemi, S.M.R. Investigation and Evaluation of Risk of Pathogen Transfer by Ballast Water in Shahid Rajaee Port, Hormozgan Province, Iran. Environ. Monit. Assess. 2024, 196, 1174. DOI: https://doi.org/10.1007/s10661-024-13329-z
  10. Lefebvre, K.A.; Quakenbush, L.; Frame, E.; et al. Prevalence of Algal Toxins in Alaskan Marine Mammals Foraging in a Changing Arctic and Subarctic Environment. Harmful Algae 2016, 55, 13–24. DOI: https://doi.org/10.1016/j.hal.2016.01.007
  11. Wang, Q.; Cheng, F.; Xue, J.; et al. Bacterial Community Composition and Diversity in the Ballast Water of Container Ships Arriving at Yangshan Port, Shanghai, China. Mar. Pollut. Bull. 2020, 160, 111640. DOI: https://doi.org/10.1016/j.marpolbul.2020.111640
  12. Lv, B.; Cui, Y.; Tian, W.; et al. Vessel Transport of Antibiotic Resistance Genes across Oceans and Its Implications for Ballast Water Management. Chemosphere 2020, 253, 126697. DOI: https://doi.org/10.1016/j.chemosphere.2020.126697
  13. Gyraite, G.; Katarzyte, M.; Schernewski, G. First Findings of Potentially Human Pathogenic Bacteria Vibrio in the South-Eastern Baltic Sea Coastal and Transitional Bathing Waters. Mar. Pollut. Bull. 2019, 149, 110546. DOI: https://doi.org/10.1016/j.marpolbul.2019.110546
  14. Racault, M.F.; Abdulaziz, A.; George, G.; et al. Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. Remote Sens. 2019, 11, 2763. DOI: https://doi.org/10.3390/rs11232763
  15. Nosrati-Ghods, N.; Ghadiri, M.; Früh, W.G. Management and Environmental Risk Study of the Physicochemical Parameters of Ballast Water. Mar. Pollut. Bull. 2017, 114, 428–438. DOI: https://doi.org/10.1016/j.marpolbul.2016.09.062
  16. Molina, V.; Drake, L.A. Efficacy of Open-Ocean Ballast Water Exchange: A Review. Manag. Biol. Invasion. 2016, 7, 375–388.
  17. IMO. International Convention for the Control and Management of Ships’ Ballast Water and Sediment. International Maritime Organization: London, UK, 2004.
  18. Wang, H.; Xie, D.; Bowler, P.A.; et al. Non-indigenous Species in Marine and Coastal Habitats of the South China Sea. Sci. Total Environ. 2021, 759, 143465. DOI: https://doi.org/10.1016/j.scitotenv.2020.143465
  19. Shang, L.; Zhai, X.; Tian, W.; et al. Pseudocochlodinium profundisulcus Resting Cysts Detected in the Ballast Tank Sediment of Ships Arriving in the Ports of China and North America and the Implications in the Species’ Geographic Distribution and Possible Invasion. Int. J. Environ. Res. Public Health. 2022, 19, 299. DOI: https://doi.org/10.3390/ijerph19010299
  20. Çinar, M.E.; Arianoutsou, M.; Zenetos, A.; et al. Impacts of Invasive Alien Marine Species on Ecosystem Services and Biodiversity: A Pan-European Review. Aquat. Invasions. 2014, 9, 391–423.
  21. Costello, K.E.; Lynch, S.A.; McAllen, R.; et al. Assessing the Potential for Invasive Species Introductions and Secondary Spread Using Vessel Movements in Maritime Ports. Mar. Pollut. Bull. 2022, 177, 113496. DOI: https://doi.org/10.1016/j.marpolbul.2022.113496
  22. Lv, B.; Jiang, T.; Wei, H.; et al. Transfer of Antibiotic-Resistant Bacteria via Ballast Water with a Special Focus on Multiple Antibiotic Resistant Bacteria: A Survey from an Inland Port in the Yangtze River. Mar. Pollut. Bull. 2021, 166, 112166. DOI: https://doi.org/10.1016/j.marpolbul.2021.112166
  23. Abelando, M.; Bobinac, M.; Fiore, J.C. Assessment of the Efficiency of Controls to Prevent Biologic Invasions at the San Lorenzo Port, Argentina. Environ. Monit. Assess. 2020, 192, 420. DOI: https://doi.org/10.1007/s10661-020-08359-2
  24. Xu, H.; Ding, H.; Li, M.; et al. The Distribution and Economic Losses of Alien Species Invasion to China. Biol. Invasions. 2006, 8, 1495–1500. DOI: https://doi.org/10.1007/s10530-005-5841-2
  25. Sayinli, B.; Dong, Y.; Park, Y.; et al. Recent Progress and Challenges Facing Ballast Water Treatment – A Review. Chemosphere. 2022, 291, 132776. DOI: https://doi.org/10.1016/j.chemosphere.2021.132776
  26. Yonsel, F.; Vural, G. KPI (Key Performance Indicators) Application on Ballast Water Treatment System Selection. Int. J. Nav. Archit. Ocean Eng. 2017, 68, 67–84.
  27. Bradie, J.N.; Drake, D.A.R.; Ogilvie, D.; et al. Ballast Water Exchange Plus Treatment Lowers Species Invasion Rate in Freshwater Ecosystems. Environ. Sci. Technol. 2021, 55, 82–89.
  28. Lakshmi, E.; Priya, M.; Sivanandan, A.V. An Overview on the Treatment of Ballast Water in Ships. Ocean Coast. Manag. 2021, 199, 105296. DOI: https://doi.org/10.1016/j.ocecoaman.2020.105296
  29. Paolucci, E.; Hernandez, M.; Potapov, A.; et al. Hybrid System Increases Efficiency of Ballast Water Treatment. J. Appl. Ecol. 2015, 52, 770–779. DOI: https://doi.org/10.1111/1365-2664.12397
  30. Feng, W.; Chen, Y.; Zhang, T.; et al. Evaluate the Compliance of Ballast Water Management System on Various Types of Operational Vessels Based on the D-2 Standard. Mar. Pollut. Bull. 2023, 194, 115381. DOI: https://doi.org/10.1016/j.marpolbul.2023.115381
  31. Yılmaz, M.; Güney, C.B. Evaluation of Ballast Water Treatment Systems from the Perspective of Expert Seafarers' Ship Experiences. Brodogradnja. 2023, 74, 129–154.
  32. Buana, S.; Yano, K.; Shinoda, T. Design Evaluation Methodology for Ships’ Outfitting Equipment by Applying Multi-Criteria Analysis: Proper Choices Analysis of Ballast Water Management Systems. Int. J. Technol. 2022, 13, 310–320. DOI: https://doi.org/10.14716/ijtech.v13i2.5087
  33. Radulescu, C.Z.; Balog, A.; Bajenaru, L.; et al. Multi-Criteria Decision Making Software Products – A Comparison and Ranking in Terms of Usability and Functionality. In Proceedings of the 12th Romanian Conference on HCI, RoCHI 2015, Bucharest, Romania, 24–25 September 2015.
  34. Outinen, O.; Bailey, S.A.; Casas-Monroy, O.; et al. Biological Testing of Ships’ Ballast Water Indicates Challenges for the Implementation of the Ballast Water Management Convention. Front. Mar. Sci. 2024, 11, 1334286. DOI: https://doi.org/10.3389/fmars.2024.1334286
  35. Mehinto, A.C.; Coffin, S.; Koelmans, A.A.; et al. Risk-Based Management Framework for Microplastics in Aquatic Ecosystems. Microplast. Nanoplast. 2022, 2, 17. DOI: https://doi.org/10.1186/s43591-022-00033-3
  36. Wabnitz, C.C.C.; Lam, V.W.Y.; Reygondeau, G.; et al. Climate Change Impacts on Marine Biodiversity, Fisheries and Society in the Arabian Gulf. PLoS One. 2018, 13, e0194537. DOI: https://doi.org/10.1371/journal.pone.0194537
  37. Yoshimura, J.; Tanaka, Y.; Togashi, T.; et al. Mathematical Equivalence of Geometric Mean Fitness with Probabilistic Optimization under Environmental Uncertainty. Ecol. Model. 2009, 220, 2611–2617. DOI: https://doi.org/10.1016/j.ecolmodel.2009.06.046
  38. Martinez, M.N.; Bartholomew, M.J. What Does It “Mean”? A Review of Interpreting and Calculating Different Types of Means and Standard Deviations. Pharmaceutics. 2017, 9, 14. DOI: https://doi.org/10.3390/pharmaceutics9020014
  39. Chakrabartty, S.N. Tender Evaluation Avoiding Weights. J. Addict. Res. Adolesc. Behav. 2024, 7, 61. DOI: https://doi.org/10.31579/2688-7517/061
  40. IMO. Interim Guidance on the Application of the BWM Convention to Ships Operating in Challenging Water Quality Conditions. International Maritime Organization: London, UK, 2023.
  41. IMO. Report of the Ballast Water Review Group. International Maritime Organization: London, UK, 2023.
  42. Lee, J.W.; Lee, C.K.; Moon, C.S.; et al. Korea National Survey for Environmental Pollutants in the Human Body 2008: Heavy Metals in the Blood or Urine of the Korean Population. Int. J. Hyg. Environ. Health. 2012, 215, 449–457. DOI: https://doi.org/10.1016/j.ijheh.2012.01.002
  43. Vogel, R.M. The Geometric Mean? Commun. Stat. Theory Methods. 2020, 51, 82–94. DOI: https://doi.org/10.1080/03610926.2020.1743313
  44. Mao, X.; Zhou, Y.; Yuen, K.F. Ballast Water Management of Nuclear Wastewater: Tripartite Policy Analysis. Ocean Coast. Manag. 2025, 269, 107825. DOI: https://doi.org/10.1016/j.ocecoaman.2025.107825
  45. Olsson, U. Confidence Intervals for the Mean of a Log-Normal Distribution. J. Stat. Educ. 2005, 13, 1–9. DOI: https://doi.org/10.1080/10691898.2005.11910638