Novel Adaptive DCT‑Based Steganography Algorithm with Coefficient Selection Optimization for JPEG Images

Journal of Intelligent Communication

Article

Novel Adaptive DCT‑Based Steganography Algorithm with Coefficient Selection Optimization for JPEG Images

[1]
Noorallahzadeh, M.H. 2026. Novel Adaptive DCT‑Based Steganography Algorithm with Coefficient Selection Optimization for JPEG Images. Journal of Intelligent Communication. 5, 1 (Jun. 2026), 116–139. DOI:https://doi.org/10.54963/jic.v5i1.1570.

Authors

  • Mohammad Hossein Noorallahzadeh

    Faculty of Science, University of Qom, Qom 37161‑46611, Iran

Received: 31 August 2025; Revised: 28 December 2025; Accepted: 30 December 2025; Published: 2 February 2026

In the realm of secure digital communication, balancing payload capacity with perceptual imperceptibility remains a critical challenge, particularly within lossy compression standards like JPEG. This paper proposes a robust steganography framework that addresses this trade-off by integrating adaptive Discrete Cosine Transform (DCT) modification with an edge-based selection criterion. Unlike uniform embedding approaches that indiscriminately treat all image regions, the proposed method employs Canny edge detection to categorize blocks based on texture complexity. This strategy leverages the masking properties of the Human Visual System (HVS), allocating higher payload capacities to complex, edge-rich regions where modifications are statistically less detectable. To further enhance embedding efficiency, a decimal-to-ternary (base-3) coding scheme is introduced to optimize the utilization of DCT coefficients. This mechanism is coupled with a modulo optimization search within a constrained range of , which minimizes the magnitude of necessary modifications compared to traditional binary embedding. Experimental evaluations on standard datasets, including USC-SIPI, indicate that the method maintains a Peak Signal-to-Noise Ratio (PSNR) significantly higher than traditional methods, ranging from 48 dB to 62 dB depending on the embedding rate. Furthermore, quantitative analysis demonstrates a 58.5% improvement in embedding efficiency over standard binary techniques. Consequently, this adaptive strategy offers a superior trade-off between high-capacity data hiding and resistance to statistical steganalysis compared to standard LSB and non-adaptive DCT methods.

Keywords:

Steganography Adaptive DCT Edge Detection Base‑3 Embedding JPEG Security Coefficient Optimization

References

  1. Kaur, S.; Singh, S.; Kaur, M.; et al. A Systematic Review of Computational Image Steganography Approaches. Arch Computat Methods Eng 2022, 29, 4775–4797. DOI: https://doi.org/10.1007/s11831-022-09749-0
  2. Ali, A.; Al-rimy, B.A.S.; Alsubaei, F.S.; et al. HealthLock: Blockchain-Based Privacy Preservation Using Homomorphic Encryption in Internet of Things Healthcare Applications. Sensors 2023, 23, 6762. DOI: https://doi.org/10.3390/s23156762
  3. Liu, Y.; Liu, S.; Wang, Y.; et al. Video steganography: A review. Neurocomputing 2019, 335, 238–250. DOI: https://doi.org/10.1016/j.neucom.2018.09.091
  4. Kormilainen, R.; Lehtovuori, A.; Liesio, J.; et al. A Method to Co-Design Antenna Element and Array Patterns. IEEE Access 2022, 10, 31190–31200. DOI: https://doi.org/10.1109/ACCESS.2022.3160459
  5. Al-Ataby, A.; Al-Naima, F. A modified high capacity image steganography technique based on wavelet transform. Int. Arab J. Inf. Technol. 2020, 7, 358–364.
  6. Mazurczyk, W.; Szczypiorski, K. Is Cloud Computing Steganography-proof? In Proceedings of the 2011 Third International Conference on Multimedia Information Networking and Security, Shanghai, China, 1 November 2011; pp. 441–442. DOI: https://doi.org/10.1109/MINES.2011.95
  7. Ahmad, I.; Shin, S. A Perceptual Encryption-Based Image Communication System for Deep Learning-Based Tuberculosis Diagnosis Using Healthcare Cloud Services. Electronics 2022, 11, 2514. DOI: https://doi.org/10.3390/electronics11162514
  8. Zhao, D.; Luo, L.; Yu, H.; et al. Security–SLA–guaranteed service function chain deployment in cloud-fog computing networks. Cluster Comput 2021, 24, 2479–2494. DOI: https://doi.org/10.1007/s10586-021-03278-4
  9. Hussain, M.; Wahab, A.W.A.; Idris, Y.I.B.; et al. Image steganography in spatial domain: A survey. Signal Process. Signal Process. Image Commun. 2018, 65, 46–66. DOI: https://doi.org/10.1016/j.image.2018.03.012
  10. Wang, G.; Huang, B.; Gu, K.; et al. No-Reference Multi-Level Video Quality Assessment Metric for 3D-Synthesized Videos. IEEE Trans. on Broadcast. 2024, 70, 584–596. DOI: https://doi.org/10.1109/TBC.2024.3396696
  11. Butora, J.; Yousfi, Y.; Fridrich, J. How to Pretrain for Steganalysis. In Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security, Online, 17 June 2021; pp. 143–148. DOI: https://doi.org/10.1145/3437880.3460395
  12. Johnson, N.F.; Jajodia, S. Exploring steganography: Seeing the unseen. Computer 1998, 31, 26–34. DOI: https://doi.org/10.1109/MC.1998.4655281
  13. Zhang, W.; Li, S. A coding problem in steganography. Des. Codes Cryptogr. 2008, 46, 67–81. DOI: https://doi.org/10.1007/s10623-007-9135-9
  14. Bailey, K.; Curran, K. An evaluation of image based steganography methods. Multimed. Tools Appl. 2006, 30, 55–88. DOI: https://doi.org/10.1007/s11042-006-0008-4
  15. Dhawan, S.; Gupta, R. Analysis of various data security techniques of steganography: A survey. Inf. Secur. J. Glob. Perspect. 2021, 30, 63–87. DOI: https://doi.org/10.1080/19393555.2020.1801911
  16. Setyono, A.; Setiadi, D.R.I.M. Image watermarking using discrete cosine transform (DCT) and discrete wavelet transform (DWT): A comparative study. Indones. J. Electr. Eng. Comput. Sci. 2019, 16, 2502.
  17. Potdar, V.M.; Han, S.; Chang, E. A survey of digital image watermarking techniques. In Proceedings of the 3rd IEEE International Conference on Industrial Informatics (INDIN ‘05), Perth, Australia, 10–12 August 2005; pp. 709–716. DOI: https://doi.org/10.1109/INDIN.2005.1560462
  18. Wu, D.-C.; Tsai, W.-H. A steganographic method for images by pixel-value differencing. Pattern Recognit. Lett. 2003, 24, 1613–1626. DOI: https://doi.org/10.1016/S0167-8655(02)00402-6
  19. Ernawan, F.; Kabir, M.N. A block-based RDWT-SVD image watermarking method using human visual system characteristics. Vis. Comput. 2020, 36, 19–37. DOI: https://doi.org/10.1007/s00371-018-1567-x
  20. Putra, Y.H.; Triwibowo, B.A.; Delenia, E.; et al. Sensitivity of a Convolutional Neural Network for Different Pooling Layers in Spatial Domain Steganalysis. Inf. Syst. Eng. 2024, 29, 1653–1665. DOI: https://doi.org/10.18280/isi.290438
  21. Holub, V.; Fridrich, J. Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT. IEEE Trans. Inform. Forensic Secur. 2015, 10, 219–228. DOI: https://doi.org/10.1109/TIFS.2014.2364918
  22. Li, B.; He, J.; Huang, J.; et al. A survey on image steganography and steganalysis. J. Inf. Hiding Multimed. Signal Process. 2020, 2, 142–172.
  23. Denemark, T.; Fridrich, J. Improving Steganographic Security by Synchronizing the Selection Channel. In Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, Portland, OR, USA, 17 June 2015; pp. 5–14. DOI: https://doi.org/10.1145/2756601.2756620
  24. Boroumand, M.; Chen, M.; Fridrich, J. Deep Residual Network for Steganalysis of Digital Images. IEEE Trans. Inform. Forensic Secur. 2019, 14, 1181–1193. DOI: https://doi.org/10.1109/TIFS.2018.2871749
  25. Zhang, Y.; Luo, X.; Yang, C.; et al. A JPEG-Compression Resistant Adaptive Steganography Based on Relative Relationship between DCT Coefficients. In Proceedings of the 2015 10th International Conference on Availability, Reliability and Security, Toulouse, France, 10 August 2015; pp. 461–466. DOI: https://doi.org/10.1109/ARES.2015.53
  26. Ye, J.; Ni, J.; Yi, Y. Deep Learning Hierarchical Representations for Image Steganalysis. IEEE Trans. Inform. Forensic Secur. 2017, 12, 2545–2557. DOI: https://doi.org/10.1109/TIFS.2017.2710946
  27. Rana, B.; Singh, Y.; Singh, P.K. A systematic survey on internet of things: Energy efficiency and interoperability perspective. Trans. Emerging. Tel. Tech. 2021, 32, e4166. DOI: https://doi.org/10.1002/ett.4166
  28. Qin, C.; Zhang, W.; Cao, F.; et al. Separable reversible data hiding in encrypted images via adaptive embedding strategy with block selection. Signal Process. 2018, 153, 109–122. DOI: https://doi.org/10.1016/j.sigpro.2018.07.008
  29. Laskar, S.A.; Hemachandran, K. High Capacity data hiding using LSB Steganography and Encryption. Int. J. Database Manag. Syst. 2012, 4, 57–68. DOI: https://doi.org/10.5121/ijdms.2012.4605
  30. Kadhim, I.J.; Premaratne, P.; Vial, P.J.; et al. Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research. Neurocomputing 2019, 335, 299–326. DOI: https://doi.org/10.1016/j.neucom.2018.06.075
  31. Salas-Cueva, N.F.; Mendoza, J.; Cutipa-Luque, J.C.; et al. An Open-source Wireless Platform for Real-time Water Quality Monitoring with Precise Global Positioning. Int. J. Adv. Comput. Sci. Appl. 2021, 12. DOI: https://doi.org/10.14569/IJACSA.2021.0120986
  32. Al-Otum, H.M.; Samara, N.A. A robust blind color image watermarking based on wavelet-tree bit host difference selection. Signal Process. 2010, 90, 2498–2512. DOI: https://doi.org/10.1016/j.sigpro.2010.02.017
  33. Provos, N.; Honeyman, P. Hide and seek: an introduction to steganography. IEEE Secur. Privacy. 2003, 1, 32–44. DOI: https://doi.org/10.1109/MSECP.2003.1203220
  34. Ker, A.D.; Bas, P.; Böhme, R.; et al. Moving steganography and steganalysis from the laboratory into the real world. In Proceedings of the first ACM workshop on Information hiding and multimedia security, Montpellier, France, 17 June 2013; pp. 45–58. DOI: https://doi.org/10.1145/2482513.2482965
  35. Dumitrescu, S.; Wu, X.; Wang, Z. Detection of LSB steganography via sample pair analysis. IEEE Trans. Signal Process. 2003, 51, 1995–2007. DOI: https://doi.org/10.1109/TSP.2003.812753
  36. Xu, G.; Wu, H.-Z.; Shi, Y.-Q. Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Process. Lett. 2016, 23, 708–712. DOI: https://doi.org/10.1109/LSP.2016.2548421
  37. John, E.G.; Lakshmipriya, K.A.; Malavika, P.S.; et al. Performance Analysis of PVD and LSB Steganographic Techniques in Secure Data Handling Using FPGA. In Proceedings of 2025 11th International Conference on Smart Computing and Communications (ICSCC), Kochi, India, 3 July 2025; pp. 1–5. DOI: https://doi.org/10.1109/ICSCC66177.2025.11233682
  38. Pevny, T.; Bas, P.; Fridrich, J. Steganalysis by Subtractive Pixel Adjacency Matrix. IEEE Trans. Inform. Forensic Secur. 2010, 5, 215–224. DOI: https://doi.org/10.1109/TIFS.2010.2045842
  39. Chaumont, M.; Puech, S. A DCT-based data-hiding method to embed the color information in a JPEG grey level image. In Proceedings of the 2006 European Signal Processing Conference, Florence, Italy, 4 September 2006.
  40. Chang, C.-C.; Chen, T.-S.; Chung, L.-Z. A steganographic method based upon JPEG and quantization table modification. Inf. Sci. 2002, 141, 123–138. DOI: https://doi.org/10.1016/S0020-0255(01)00194-3
  41. Fridrich, J.; Goljan, M. Practical steganalysis of digital images: State of the art. In Proceedings of the Electronic Imaging 2002, San Jose, CA, USA, 29 April 2002. DOI: https://doi.org/10.1117/12.465263
  42. Qian, Y.; Dong, J.; Wang, W.; et al. Deep learning for steganalysis via convolutional neural networks. In Proceedings of the Electronic Imaging 2015, San Jose, CA, USA, 4 March 2015. DOI: https://doi.org/10.1117/12.2083479
  43. Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete Cosine Transform. IEEE Trans. Comput. 1974, C–23, 90–93. DOI: https://doi.org/10.1109/T-C.1974.223784
  44. Wallace, G.K. The JPEG still picture compression standard. IEEE Trans. Consumer Electron. 1992, 38. DOI: https://doi.org/10.1109/30.125072
  45. JSteg steganography. Available online: https://github.com/lukechampine/jsteg (accessed on 15 May 2025).
  46. Fridrich, J.; Goljan, M.; Hogea, D. Steganalysis of JPEG Images: Breaking the F5 Algorithm. In Information Hiding; Petitcolas, F.A.P., Ed.; Springer: Berlin, Germany, 2003; Volume 2578, pp. 310–323. DOI: https://doi.org/10.1007/3-540-36415-3_20
  47. Johnson, N.F.; Duric, Z.; Jajodia, S.; et al. Information Hiding: Steganography and Watermarking—Attacks and Countermeasures. J. Electron. Imaging 2001, 10, 825. DOI: https://doi.org/10.1117/1.1388610
  48. Westfeld, A. F5—A Steganographic Algorithm: High Capacity Despite Better Steganalysis. In Information Hiding; Moskowitz, I.S., Ed.; Springer: Berlin, Germany, 2001; Volume 2137, pp. 289–302. DOI: https://doi.org/10.1007/3-540-45496-9_21
  49. Provos, N. Defending against statistical steganalysis. In Proceedings of the 10th USENIX Security Symposium, Washington, DC, USA, 13 August 2001; pp. 323–335.
  50. Fridrich, J.; Pevný, T.; Kodovský, J. Statistically undetectable jpeg steganography: Dead ends challenges, and opportunities. In Proceedings of the 9th workshop on Multimedia & security, Dallas, TX, USA, 22 June 2021. DOI: https://doi.org/10.1145/1288869.1288872
  51. Sedighi, V.; Cogranne, R.; Fridrich, J. Content-Adaptive Steganography by Minimizing Statistical Detectability. IEEE Trans. Inform. Forensic Secur. 2016, 11, 221–234. DOI: https://doi.org/10.1109/TIFS.2015.2486744
  52. Filler, T.; Fridrich, J. Design of adaptive steganographic schemes for digital images. In Proceedings of the IS&T/SPIE Electronic Imaging, San Francisco, CA, USA, 10 February 2011. DOI: https://doi.org/10.1117/12.872192
  53. Pevný, T.; Filler, T.; Bas, P. Using High-Dimensional Image Models to Perform Highly Undetectable Steganography. In Information Hiding; Böhme, R., Fong, P.W.L., Safavi-Naini, R., Eds.; Springer: Berlin, Germany, 2010; Volume 6387, pp. 161–177. DOI: https://doi.org/10.1007/978-3-642-16435-4_13
  54. Holub, V.; Fridrich, J. Digital image steganography using universal distortion. In Proceedings of the first ACM workshop on Information hiding and multimedia security, Montpellier, France, 17 June 2013; pp. 59–68. DOI: https://doi.org/10.1145/2482513.2482514
  55. Holub, V.; Fridrich, J. Designing steganographic distortion using directional filters. In Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Tenerife, Spain, 20 December 2012; pp. 234–239. DOI: https://doi.org/10.1109/WIFS.2012.6412655
  56. Holub, V.; Fridrich, J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J. on Info. Security 2014, 2014, 1. DOI: https://doi.org/10.1186/1687-417X-2014-1
  57. Butora, J.; Fridrich, J. Reverse JPEG Compatibility Attack. IEEE Trans. Inform. Forensic Secur. 2020, 15, 1444–1454. DOI: https://doi.org/10.1109/TIFS.2019.2940904
  58. Leask, V.; Cogranne, R.; Borghys, D.; et al. UNCOVER: Development of an efficient steganalysis framework for uncovering hidden data in digital media. In Proceedings of the 17th International Conference on Availability, Reliability and Security, Vienna, Austria, 23 August 2022; pp. 1–8. DOI: https://doi.org/10.1145/3538969.3544468
  59. Filler, T.; Judas, J.; Fridrich, J. Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes. IEEE Trans. Inform. Forensic Secur. 2011, 6, 920–935. DOI: https://doi.org/10.1109/TIFS.2011.2134094
  60. He, Z.; Wu, R.; Wang, X. Image Steganalysis Based on an Adaptive Attention Mechanism and Lightweight DenseNet. Comput. Mater. Continua 2025, 85, 1631–1651. DOI: https://doi.org/10.32604/cmc.2025.067252
  61. Khandelwal, J.; Sharma, V.K. W-VDSR: wavelet-based secure image transmission using machine learning VDSR neural network. Multimed. Tools. Appl. 2023, 82, 42147–42172. DOI: https://doi.org/10.1007/s11042-023-15166-7
  62. Khandelwal, J.; Sharma, V.K. Strengthening wavelet based image steganography using Rubik’s cube segmentation and secret image scrambling. Multimed Tools Appl 2024, 83, 78797–78825. DOI: https://doi.org/10.1007/s11042-024-18576-3
  63. Goud, S.K.; Yadav, B.D.; Goud, R.S.; et al. Unmasking Cyberbullying Through NLP-Driven Detection in Contemporary Social Media. In Proceedings of the 7th International Conference on Communications and Cyber Physical Engineering; Springer Nature: Singapore, 2025; Volume 1466, pp. 959–968. DOI: https://doi.org/10.1007/978-981-95-0269-1_108
  64. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. DOI: https://doi.org/10.1109/TPAMI.1986.4767851
  65. Guo, L.; Ni, J.; Su, W.; et al. Using Statistical Image Model for JPEG Steganography: Uniform Embedding Revisited. IEEE Trans. Inform. Forensic Secur. 2015, 10, 2669–2680. DOI: https://doi.org/10.1109/TIFS.2015.2473815
  66. Marr, D.; Hildreth, E. Theory of edge detection. Proc Biol Sci 1980, 207, 187–217. DOI: https://doi.org/10.1098/rspb.1980.0020
  67. Zhang, Y.; Ma, Y.; Zhang, Q.; et al. An Image Robust Batch Steganography Framework With Minimum Embedding Signs. IEEE Trans. Inform. Forensic Secur. 2025, 20, 10745–10760. DOI: https://doi.org/10.1109/TIFS.2025.3615446
  68. Sallee, P. Model-Based Steganography. In Digital Watermarking; Kalker, T., Cox, I., Ro, Y.M., Eds.; Springer: Berlin, Germany, 2004; Volume 2939, pp. 154–167. DOI: https://doi.org/10.1007/978-3-540-24624-4_12
  69. Fridrich, J. Steganography in Digital Media: Principles, Algorithms, and Applications; Cambridge University Press: Cambridge, UK, 2009. DOI: https://doi.org/10.1017/CBO9781139192903
  70. Ker, A.D. A General Framework for Structural Steganalysis of LSB Replacement. In Information Hiding; Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., et al., Eds.; Springer: Berlin, Germany, 2005; Volume 3727, pp. 296–311. DOI: https://doi.org/10.1007/11558859_22
  71. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Image Process. 2004, 13, 600–612. DOI: https://doi.org/10.1109/TIP.2003.819861
  72. Wu, H.-C.; Chang, C.-C. A novel digital image watermarking scheme based on the vector quantization technique. Comput. Secur. 2005, 24, 460–471. DOI: https://doi.org/10.1016/j.cose.2005.05.001
  73. Böhme, R. Advanced Statistical Steganalysis; Springer: Berlin, Germany, 2010. DOI: https://doi.org/10.1007/978-3-642-14313-7
  74. Westfeld, A.; Pfitzmann, A. Attacks on Steganographic Systems. In Information Hiding; Pfitzmann, A. Ed.; Springer: Berlin, Germany, 2000; Volume 1768, pp. 61–76. DOI: https://doi.org/10.1007/10719724_5
  75. Lyu, S.; Farid, H. Steganalysis Using Higher-Order Image Statistics. IEEE Trans. Inform. Forensic Secur. 2006, 1, 111–119. DOI: https://doi.org/10.1109/TIFS.2005.863485
  76. Fridrich, J.; Kodovsky, J. Rich Models for Steganalysis of Digital Images. IEEE Trans. Inform. Forensic Secur. 2012, 7, 868–882. DOI: https://doi.org/10.1109/TIFS.2012.2190402
  77. Cox, I.J.; Miller, M.L.; Bloom, J.A.; et al. Steganography. In Digital Watermarking and Steganography; Elsevier: New York, NY, USA, 2008; pp. 425–467. DOI: https://doi.org/10.1016/B978-012372585-1.50015-2
  78. Bas, P.; Filler, T.; Pevný, T. ”Break Our Steganographic System”: The Ins and Outs of Organizing BOSS. In Information Hiding; Filler, T., Pevný, T., Craver, S., et al., Eds.; Springer: Berlin, Germany, 2011; Volume 6958, pp. 59–70. DOI: https://doi.org/10.1007/978-3-642-24178-9_5
  79. Cachin, C. An information-theoretic model for steganography. Inf. Comput. 2004, 192, 41–56. DOI: https://doi.org/10.1016/j.ic.2004.02.003
  80. Eskicioglu, A.M.; Fisher, P.S. Image quality measures and their performance. IEEE Trans. Commun. 1995, 43, 2959–2965. DOI: https://doi.org/10.1109/26.477498
  81. Kodovsky, J.; Fridrich, J.; Holub, V. Ensemble Classifiers for Steganalysis of Digital Media. IEEE Trans. Inform. Forensic Secur. 2012, 7, 432–444. DOI: https://doi.org/10.1109/TIFS.2011.2175919
  82. Huang, Y.; Liu, Z.; Wu, Q.; et al. Robust image steganography against JPEG compression based on DCT residual modulation. Signal Process. 2024, 219, 109431. DOI: https://doi.org/10.1016/j.sigpro.2024.109431
  83. Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. DOI: https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
  84. Yao, Y.; Wang, J.; Chang, Q.; et al. High invisibility image steganography with wavelet transform and generative adversarial network. Expert Syst. Appl. 2024, 249, 123540. DOI: https://doi.org/10.1016/j.eswa.2024.123540
  85. Majeed, N.D.; Al-Askery, A.J.; Hasan, F.S.; et al. A Survey on Steganography and Image Encryption Techniques. Electr. Eng. Tech. J. 2025, 2, 11–24. DOI: https://doi.org/10.51173/eetj.v2i1.13
  86. Fu, G.; Peng, Y.; Hu, J.; et al. A Systematic Review of Deep Learning-Based Image Steganography: Paradigms, Progress, and Prospects. In Proceedings of the 2025 4th International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Chongqing, China, 21 November 2025; pp. 307–312. DOI: https://doi.org/10.1109/ICICML67980.2025.11333424
  87. Muttoo, S.K.; Kumar, S. A multilayered secure, robust and high capacity image steganographic algorithm. World J. Sci. Technol. Sustain. Dev. 2025, 8, 37–51.
  88. Mohaisen, H.N.; Mohammed, M.Q.; Nahi, M.H. Hiding Secret Data in Color Video Applying Modify RSA for Cryptography with Randomly Select Frame and Pixel to Steganography. J. nat. appl. sci. URAL 2024, 5. Available online: https://uraljournal.remahcenter.com/images/papers/no5vol1/6.pdf
  89. Rahman, S.; Uddin, J.; Hussain, H.; et al. A novel and efficient digital image steganography technique using least significant bit substitution. Sci. Rep. 2025, 15, 107. DOI: https://doi.org/10.1038/s41598-024-83147-3
  90. Zhou, W.; Song, W.; Zhang, Z.; et al. Hierarchical feature aggregation with mixed attention mechanism for single-cell RNA-seq analysis. Expert Syst. Appl. 2025, 260, 125340. DOI: https://doi.org/10.1016/j.eswa.2024.125340
  91. Li, Y.; Li, J.; Bhatti, U.A.; et al. Robust Zero-watermarking Algorithm for Medical Images Based on ORB and DCT. In Proceedings of the 2023 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter), Taiwan, China, 5 July 2023; pp. 282–289. DOI: https://doi.org/10.1109/SNPD-Winter57765.2023.10223992
  92. Hou, B.; Fu, C.; Xue, M. An extended belief rule-based system with hybrid sampling strategy for imbalanced rule base. Inf. Sci. 2024, 684, 121288. DOI: https://doi.org/10.1016/j.ins.2024.121288
  93. Rehman, W. A Novel Approach to Image Steganography Using Generative Adversarial Networks. arXiv preprint 2024, arXiv: 2412.00094. DOI: https://doi.org/10.48550/ARXIV.2412.00094
  94. Chen, X.; Zheng, H.; Tang, H.; et al. Multi-scale perceptual YOLO for automatic detection of clue cells and trichomonas in fluorescence microscopic images. Comput. Biol. Med. 2024, 175, 108500. DOI: https://doi.org/10.1016/j.compbiomed.2024.108500