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Abstract: In the realm of secure digital communication, balancing payload capacity with perceptual imperceptibil-
ity remains a critical challenge, particularly within lossy compression standards like JPEG. This paper proposes a
robust steganography framework that addresses this trade-off by integrating adaptive Discrete Cosine Transform
(DCT) modification with an edge-based selection criterion. Unlike uniform embedding approaches that indiscrimi-
nately treat all image regions, the proposed method employs Canny edge detection to categorize 8 X 8 blocks based
on texture complexity. This strategy leverages the masking properties of the Human Visual System (HVS), allocat-
ing higher payload capacities to complex, edge-rich regions where modifications are statistically less detectable.
To further enhance embedding efficiency, a decimal-to-ternary (base-3) coding scheme is introduced to optimize
the utilization of DCT coefficients. This mechanism is coupled with a modulo optimization search within a con-
strained range of [C — 2, C + 2], which minimizes the magnitude of necessary modifications compared to traditional
binary embedding. Experimental evaluations on standard datasets, including USC-SIP], indicate that the method
maintains a Peak Signal-to-Noise Ratio (PSNR) significantly higher than traditional methods, ranging from 48 dB to
62 dB depending on the embedding rate. Furthermore, quantitative analysis demonstrates a 58.5% improvement
in embedding efficiency over standard binary techniques. Consequently, this adaptive strategy offers a superior
trade-off between high-capacity data hiding and resistance to statistical steganalysis compared to standard LSB
and non-adaptive DCT methods.

Keywords: Steganography; Adaptive DCT; Edge Detection; Base-3 Embedding; JPEG Security; Coefficient Optimiza-
tion

1. Introduction

In the rapidly evolving landscape of information security, where threats emerge with increasing sophistication
and adversaries leverage cutting-edge tools to intercept communications, digital steganography has firmly estab-
lished itself as a pivotal technology for secure communication [1]. This technique enables the concealment of sensi-
tive data within everyday digital media—such as images, audio files, or videos—in a manner that renders the very
existence of the secret information imperceptible to casual observers, even under close scrutiny. Unlike overt meth-
ods that might raise alarms through encryption indicators or unusual file sizes, steganography operates covertly,
blending secret payloads seamlessly into innocuous carriers [2].

While traditional cryptography excels at protecting the content of a message by scrambling it into unreadable
ciphertext—requiring a key for decryption—steganography takes a fundamentally different approach by focusing
on protecting the channel itself [3]. It ensures that the act of communication remains hidden, preventing adver-
saries from even knowing that a secret exchange is taking place. By embedding the secret data within an innocent-
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looking cover file, such as a family photo or a landscape image shared on social media, steganography avoids draw-
ing suspicion [4]. This feature is increasingly vital in scenarios requiring the highest levels of discretion, including
military intelligence operations where operatives must transmit coordinates or orders without alerting surveillance
systems, covert operations by intelligence agencies exchanging plans in hostile territories, or even corporate espi-
onage where whistleblowers share documents undetected. In these high-stakes environments, the mere detection
of encrypted traffic can trigger investigations, whereas a stego image passes as mundane content [5].

Among the various digital formats available for cover media, JPEG images stand out as the most ubiquitous stan-
dard for image transmission across the web, smartphones, and cloud storage platforms [6]. Their popularity stems
from highly efficient compression algorithms that drastically reduce file sizes without unacceptable loss of visual
quality, making them ideal for bandwidth-constrained networks. However, the specific architecture of JPEG com-
pression introduces a unique and profoundly difficult challenge for steganographic algorithms [7]. JPEG operates
as a lossy compression standard, employing block-wise Discrete Cosine Transform (DCT) to convert spatial pixel
data into frequency coefficients, followed by quantization that aggressively discards high-frequency data—those
representing fine details and noise—to minimize file size [8]. This process inherently alters the image, and any
embedding must be robust enough to survive the quantization phase, where coefficients are rounded to discrete
values, while simultaneously remaining statistically undetectable to forensic analysis [9].

The fundamental challenge in designing any effective steganographic protocol revolves around balancing three
inherently conflicting requirements, often encapsulated in what researchers term the “magic triangle”: embedding
capacity, visual imperceptibility, and robustness against steganalysis [10]. Embedding capacity refers to the volume
of secret data that can be reliably hidden per unit of cover media, typically measured in bits per pixel (bpp) or
as a percentage of the cover size. Visual imperceptibility demands that the stego image appears identical to the
original to the human eye, preserving natural textures, colors, and contrasts [11]. Robustness against steganalysis
ensures survival against detection algorithms that probe for anomalies. Unfortunately, increasing payload capacity
almost invariably leads to higher distortion in the cover image—through pixel shifts or coefficient tweaks—thereby
eroding visual imperceptibility and heightening detection risks [12]. This trade-off forces designers to navigate a
delicate equilibrium, where pushing one vertex of the triangle distorts the others.

Early research in steganography primarily concentrated on spatial domain techniques, with Least Significant
Bit (LSB) substitution emerging as the cornerstone method [13]. These approaches were prized for their compu-
tational simplicity, requiring only basic bit operations, and offered impressively high storage capacity by directly
modifying the least significant bits of pixel values across the image matrix. For instance, in an 8-bit grayscale im-
age, up to one bit per pixel could be embedded by flipping the LSB, yielding a theoretical 12.5% capacity for binary
data [14]. However, these methods drastically alter the raw statistical properties of the image histogram, smoothing
out natural distributions and introducing artificial uniformities. As a result, spatial techniques proved extremely
vulnerable to statistical attacks, such as the Chi-square attack that compares observed pixel pair frequencies against
expected random models, and they are readily destroyed by innocuous image processing operations like cropping
edges, resizing for thumbnails, or mild JPEG recompression [15]. A single pass through such filters could obliterate
the hidden payload, rendering LSB impractical for real-world deployment.

Consequently, the focus of the research community shifted decisively towards transform domain techniques,
which promised greater resilience [16]. Methods operating in the Discrete Cosine Transform (DCT) domain embed
data into the frequency coefficients of image blocks rather than tampering with individual pixels in the spatial realm.
This embedding aligns with the JPEG pipeline, allowing data to persist through compression cycles [17]. DCT-based
approaches offer enhanced robustness and security because modifications are dispersed across frequency spectra,
mimicking compression noise and withstanding signal processing attacks like filtering or scaling [18]. While this
paradigm significantly bolsters survival rates—often enduring multiple JPEG iterations—it frequently suffers from
limited payload capacity compared to spatial counterparts, as not all coefficients can be altered without introducing
detectable biases [19]. This limitation has driven the development of more efficient coding schemes, such as matrix
embeddings or trellis codes, to pack more bits per change. Yet, even these refinements struggle against evolving
detectors that model inter-coefficient dependencies [20].

Recent advancements in the field have underscored the critical importance of content-adaptive steganography
as a means to bridge the persistent gap between capacity and security [21]. New paradigms emphatically suggest
that embedding strategies should not apply uniformly across the entire image, treating all pixels or coefficients as
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equals; instead, they must adapt dynamically to the local characteristics of the image content, leveraging inherent
redundancies [22]. The Human Visual System (HVS) exhibits remarkable non-uniform sensitivity: it is far more
attuned to detecting noise or irregularities in smooth, uniform regions—like blue skies or skin tones—where subtle
changes disrupt perceptual continuity, than in highly textured or edge-dense areas, such as foliage, fabric patterns,
or urban scenes, where natural noise masks alterations [23]. Therefore, modern algorithms employ sophisticated
complexity analysis—through metrics like local variance, edge density, or entropy measures—to pinpoint “noisy”
regions ideal for hiding data with a markedly lower probability of detection [24]. By concentrating embeddings in
these resilient zones, adaptive methods preserve global statistics while maximizing local capacity.

Furthermore, the security landscape has undergone a dramatic transformation with the meteoric rise of deep
learning-based steganalysis [25]. Convolutional Neural Networks (CNNs), with architectures like ResNet or custom
steganalytic nets trained on millions of cover-stego pairs, are now capable of detecting minute statistical anomalies—
such as higher-order co-occurrences or spectral imbalances—that eluded traditional handcrafted steganalysis tools
like histogram feature extractors or moment-based detectors [26]. These Al-driven classifiers achieve detection
accuracies exceeding 95% on modern benchmarks, even at low payloads, by learning abstract representations of
“stegoness” directly from data [27]. This escalation demands exponentially more stringent security requirements
for new algorithms, pushing beyond simplistic distortions toward provably secure primitives.

This research confronts these multi-faceted challenges head-on by proposing a novel algorithm that synergis-
tically combines advanced edge detection for intelligent, adaptive region selection—prioritizing high-complexity
boundaries where human and machine detectors alike falter—with a high-efficiency base-3 coding scheme [28].
This ternary strategy embeds more information per modification than binary methods, exploiting edge-adaptive
locations to maximize embedding capacity without compromising the statistical integrity of the cover image. By
sidestepping computational heavyweights like syndrome-trellis codes, our approach delivers practical undetectabil-
ity against both classical and deep learning steganalyzers, redefining the magic triangle’s feasible boundaries.

2. Literature Review and Theoretical Framework

Steganography sits at the heart of information security, encompassing various sophisticated methods to con-
ceal secret data within everyday digital media such as images, without detection. Recent advances have categorized
these techniques into two primary domains: spatial domain methods and transform domain methods, each exhibit-
ing distinct characteristics that determine their applicability in real-world scenarios [29].

2.1. Spatial Domain Techniques

Spatial domain methods operate directly on pixel intensities within the image matrix. The secret data bits,
potentially from encrypted messages or binary streams, are embedded directly into the raw image components.
This typically involves modifying the least significant bits (LSBs) of pixel values, which constitute the fundamental
building blocks of every digital image [30]. In RGB image configurations, each pixel location contains color informa-
tion for red, green, and blue channels, encoded as 8-bit numbers ranging from 0 to 255. By altering the rightmost
bit—the LSB—secret information can be inserted with minimal visual impact to the naked eye.

This direct pixel manipulation offers substantial embedding capacity, enabling large volumes of secret data to be
hidden within modest-sized cover images [31]. The computational efficiency is another notable advantage, as these
methods require no complex mathematical transformations prior to embedding. Simple bit swap or replacement
operations execute rapidly on resource-constrained devices such as older laptops or mobile phones, making these
techniques particularly suitable for real-time applications or scenarios with limited processing capabilities [32].

Least Significant Bit (LSB) substitution remains the most prevalent technique in both academic literature and
practical implementations. In the classic configuration, the 8th bit of a pixel byte is replaced with a bit from the
secret message, repeating this process across pixels either sequentially or following a predetermined pattern until
the entire payload is embedded [33]. To human perception, transitioning from pixel value 154 (binary 10011010) to
155 (binary 10011011) produces an imperceptible intensity change. This apparent invisibility initially positioned
LSB as an ideal solution—offering high capacity, straightforward implementation, and covert operation.

However, these modifications introduce predictable distortions in the image’s statistical properties, rendering
the technique vulnerable to scrutiny [34]. Natural photographs exhibit LSB patterns that are not randomly dis-
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tributed; rather, they maintain correlations with neighboring pixels through gradual lighting transitions, surface
textures, or residual compression artifacts. Substituting these naturally correlated bits with random secret bits
disrupts these inherent patterns, creating anomalous statistical signatures.

These irregularities become detectable through basic histogram analysis or first-order statistical attacks, re-
quiring no access to embedding keys—merely pixel value distributions [35]. Classical LSB embedding frequently
produces a “Pair of Values” (PoV) phenomenon in the histogram, where adjacent value pairs such as 2-3 or 4-5
become artificially balanced due to bit-flipping operations. Natural images typically display asymmetric pair distri-
butions; stego images exhibit unnatural smoothing. More sophisticated steganalysis techniques, including sample
pair analysis, exploit these characteristics to estimate message length with over 90% accuracy in controlled exper-
iments [36]. These methods analyze pair transitions and higher-order statistics to identify unnatural patterns.

Consequently, while spatial domain methods serve as excellent educational tools for introducing data hiding
concepts, they prove inadequate for high-security applications. In critical scenarios such as military communica-
tions or copyright watermarking, robust protection against contemporary statistical steganalysis becomes impera-
tive. The modifications remain too conspicuous, and machine learning detectors trained on stego datasets readily
identify these patterns [37].

2.2. Transform Domain Evolution

The inherent weaknesses of spatial domain methods—particularly their susceptibility to detection and fragility
under common image processing operations—motivated a paradigm shift toward transform domain techniques,
which offer substantially enhanced robustness and security [38]. Rather than directly manipulating individual pix-
els, these approaches embed secret data into the frequency coefficients of the image. This strategy effectively re-
locates the embedding battlefield from the visible spatial surface to the underlying spectral representation, where
modifications become intertwined with the image’s natural frequency patterns, resembling compression-induced
noise [39].

Operating within the frequency domain provides genuine advantages beyond mere conceptual elegance. The
embedding process inherently integrates hidden bits with the image’s spectral characteristics in a manner that signif-
icantly deceives both visual inspection and rudimentary statistical tests compared to pixel-level manipulation [40]. A
critical advantage lies in compatibility with JPEG compression’s frequency-based framework. JPEG compression does
notindiscriminately destroy frequency-domain embeddings as it does spatial modifications; instead, it tolerates these
alterations throughout its block-wise transformation and quantization pipeline [41]. Consider the ubiquity of JPEG
format—web images loading in browsers, smartphone photographs shared via messaging applications, social media
thumbnails—it dominates digital imaging. JPEG’s block-wise transforms average pixel-level modifications over 8 x 8
neighborhoods, enabling hidden data to survive recompression cycles that would completely eradicate LSB embed-
dings.

Nevertheless, transform domain embedding is not without challenges. Careless manipulation of frequency co-
efficients can disturb higher-order statistical properties—such as co-occurrence matrices tracking frequency pair
relationships, or wavelet subband dependencies revealing inter-scale correlations [42]. Modern blind steganalysis
tools, particularly those enhanced by deep neural networks, excel at identifying these subtle distortions without
requiring the original cover image for comparison. These DNNs, trained on extensive datasets comprising millions
ofimages, learn to detect minute statistical imbalances—such as biases toward even or odd coefficient values, or ab-
normal correlations between neighboring blocks—with remarkable precision [43]. Detection accuracies frequently
exceed 95% on contemporary benchmarks even at low payload rates, as these networks extract abstract “stegoness”
features directly from data patterns.

Atthe foundation of numerous transform domain techniques lies the Discrete Cosine Transform (DCT)—essentially
JPEG compression’s core mechanism [44]. This transformation partitions the image into discrete 8 x 8 blocks, sub-
sequently converting spatial pixel data into cosine-based frequency coefficients. Low-frequency coefficients capture
broad structural elements, such as smooth gradients or uniform color regions dominating the image’s overall appear-
ance. Conversely, high-frequency coefficients encode fine details, edges, and textural elements that impart photo-
graphic realism—such as individual hair strands, fabric weaves, or distant foliage [45].

Early classical DCT methods, exemplified by JSteg, embedded secret data sequentially into mid-to-high fre-
quency coefficients, selecting locations unlikely to produce obvious visual artifacts [46]. The underlying principle
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appeared sound—prioritize modification of less perceptually significant frequencies. However, this approach left
conspicuous traces. Unnatural clustering appeared in coefficient histograms, where certain values accumulated far
beyond their expected frequency in natural images. Predictable embedding patterns traversed blocks in detectable
sequences, creating trails that steganalysis algorithms could systematically follow block-by-block [47]. Steganalysis
tools, both historical and contemporary, map the spatial distribution of modified coefficients, identifying patterns
such as “every third block in row two exhibits modifications in identical DCT positions.” Alternatively, they detect
deviations from JPEG’s standard quantization tables, where the rounding process leaves characteristic fingerprints
when improperly handled. Sequential embedding proved excessively mechanical and pattern-prone [48].

These limitations catalyzed the development of more sophisticated solutions, including F5 with its matrix en-
coding methodology [49]. F5 incorporates pseudorandom key-based permutations combined with matrix struc-
tures, enabling multiple bits to be encoded through fewer coefficient modifications. Rather than direct substitution
like earlier methodes, it inverts specific matrix entries—conceptually analogous to a parity-check scheme where a
single modification can encode two or three bits depending on matrix dimensions. This dramatically reduces mod-
ifications per embedded bit, simultaneously enhancing stealth and capacity without leaving prominent statistical
footprints. The mathematical framework becomes considerably more rigorous; it minimizes the total variation
distance between original cover distribution and stego distribution, rendering statistical tests substantially more
challenging to pass. Consequently, coefficient histograms appear more natural, forcing detectors to employ increas-
ingly sophisticated analysis.

OutGuess advanced this evolution further by specifically protecting DCT histogram statistics through com-
pensatory mechanisms [50]. The fundamental strategy involves balancing statistical modifications. When an em-
bedding operation reduces the count in one histogram bin, OutGuess actively seeks alternative locations to incre-
ment, maintaining overall distributional balance to mimic the original. This histogram-preserving technique effec-
tively neutralizes basic chi-square attacks that rely on bin imbalances for detection, while also enhancing resilience
against lossy compression cycles where JPEG quantization would otherwise expose modifications. However, even
with these improvements, transform domain methods face limitations. Increasing payload capacity for high-volume
data transmission introduces scalability challenges—more data necessitates more modifications, elevating leakage
probability. Additionally, calibrated steganalysis techniques, which analyze multiple cover-stego pairs concurrently
or simulate various attack scenarios, remain effective at identifying patterns that single-image blind analysis might
overlook [51].

2.3. Adaptive Steganography Paradigms

Contemporary research has decisively shifted toward adaptive steganography—abandoning uniform, blanket
embedding strategies that treat all image regions identically [52]. Instead, modern approaches tune the embedding
process to exploit the image’s intrinsic characteristics, concentrating on “noisy” regions such as edges, complex
textures, or high-variance zones where chaos naturally dominates, while avoiding smooth, low-entropy patches
that readily leak statistical information. Conceptually, the image functions as a dynamic cost map: modifying a
pixel within a uniform blue sky incurs high cost and detection risk; manipulating a jagged rock face or leafy branch
incurs low cost and minimal risk, as natural noise masks the alterations [53]. This framework optimizes the security-
versus-capacity trade-off, maximizing bit embedding in resilient regions without introducing global distortions.

HUGO (Highly Undetectable steGO) represents a breakthrough in this paradigm, constructing high-dimensional
feature models from Gabor filters—which simulate human visual texture perception across multiple scales and
orientations—combined with Markov chains capturing local pixel dependencies [54]. HUGO assigns precise em-
bedding costs to every potential pixel modification, quantifying the steganalytic risk each change would introduce.
A sophisticated distortion function weighs these risks quantitatively, while syndrome-trellis coding selects the opti-
mal embedding paths through this complex decision space. The result produces embeddings that preserve natural
image statistics across multiple orders—first-order histograms, second-order pixel pairs, and even higher-order co-
occurrences appear pristine. Implementations of HUGO variants demonstrate remarkable capability in preserving
subtle statistical correlations [55].

Building upon directional analysis concepts, subsequent research refined techniques with directional filters—
horizontal, vertical, and diagonal gradients that decompose the image into orientation-specific subbands [56]. These
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guide embeddings toward anisotropic textures, directional patterns such as wood grain or urban street layouts
where modifications blend seamlessly into the natural grain rather than creating conspicuous artifacts. This direc-
tional guidance functions analogously to navigation: “turn left at the edge, embed heavily in that textured corner.”
While subtle, this approach demonstrably reduces detection rates in controlled experiments.

UNIWARD (UNIversal WAvelet Relative Distortion) extends this adaptive philosophy across arbitrary domains—
spatial pixels, DCT coefficients, or wavelet transforms [57]. It learns domain-specific cost functions from extensive
image collections, such as millions of natural photographs, employing isotropic filters for omnidirectional context
and directional filters to capture angular dependencies. Whether operating in pixel space or frequency domain, UNI-
WARD adapts seamlessly, minimizing relative distortion with exceptional efficacy. Its prominence as a benchmark
for low-distortion steganography is well-established in academic literature, consistently demonstrating resistance
against advanced steganalytic networks including SrNet and other deep learning detectors [58].

However, significant gaps persist in current adaptive methodologies. Balancing extremely high embedding ca-
pacity with resistance to Al-powered detectors—which achieve near-perfect detection rates on benchmark datasets
such as BOSS or ALASKA—remains a formidable challenge [59]. Most state-of-the-art adaptive methods rely heavily
on syndrome-trellis codes, which formulate embedding as a massive graph search optimization problem, but incur
prohibitive computational costs. Processing times extend to minutes per image even on high-performance GPUs,
compared to milliseconds for simpler techniques [60]. Training the cost models alone consumes hours, payload de-
coding introduces latency, and scaling to video or batch processing scenarios becomes impractical for operational
deployment [61].

Recent innovations in wavelet-based steganography have demonstrated promising results in addressing these
computational challenges. Wavelet-based secure image transmission using machine learning VDSR neural network,
as proposed by Kumar and colleagues, achieves both high embedding capacity and efficient processing through
wavelet decomposition combined with deep learning enhancement [62]. Similarly, strengthening wavelet-based
image steganography using Rubik’s cube segmentation and secret image scrambling introduces novel preprocess-
ing techniques that enhance security through strategic image partitioning and scrambling operations [63]. The
extensive dual tree complex wavelet transform-based image steganography using SVD and CNN subspace further
advances this field by combining singular value decomposition with convolutional neural network subspace analy-
sis, achieving remarkable robustness against steganalytic attacks [64].

Our proposed solution addresses these computational and security challenges through Canny edge detection’s
computational efficiency—a lightweight multi-stage process comprising gradient magnitude computation to identify
intensity transitions, non-maximum suppression to thin edges to single-pixel precision, and hysteresis thresholding
to link weak-to-strong edges while selecting only salient features [65]. This pairs optimally with an efficient base-
3 encoding strategy. Ternary encoding—representing values as 0, 1, or 2 per modification location instead of binary
0/1—packs substantially more information per coefficient change than LSB methods, all while maintaininglaser focus
on edge-adaptive zones. This approach eliminates reliance on exotic coding schemes or trellis optimization overhead,
delivering practical capacity-security-speed balance suitable for real-world deployment scenarios [66].

3. Proposed Methodology

The proposed algorithm operates in the frequency domain of JPEG compression, leveraging the synergy be-
tween edge-based texture analysis and ternary embedding optimization. The complete process is systematically
organized into three primary phases: Preprocessing and Edge Analysis, Coefficient Selection, and the Base-3 Em-
bedding Process. Figure 1 illustrates the comprehensive workflow of the proposed steganography system, demon-
strating the flow from cover image and secret message inputs through the complete embedding pipeline to the final
stego image output.

3.1. General System Workflow Description

Steganography system showing three main phases: preprocessing with edge detection, adaptive coefficient
selection, and base-3 embedding optimization.
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Figure 1. Complete workflow of the proposed adaptive DCT-based steganography.

Input Stage:

¢ Receiving the Cover Image and the Secret Message.
¢  Converting the binary secret message into Base-3 (Ternary).

Phase 1: Preprocessing & Analysis:

e  Detecting image edges using the Canny algorithm.

¢ Dividing the image into 8 X 8 blocks.

e  (Calculating Texture Complexity and classifying blocks into three categories (Smooth, Medium, Complex) to
determine embedding capacity (N,).

Phase 2: Coefficient Selection:

¢ Applying DCT transformation and Zigzag scanning.
e Adaptive selection of mid-frequency coefficients (ignoring DC and very high frequencies) based on the capacity
determined in Phase 1.

Phase 3: Base-3 Embedding:

¢  Modifying the selected coefficients (C) to a new value (C’) such that C'mod 3 = S (the message digit).
¢ Using an optimization algorithm to minimize changes (searching within the +2 range).

Output:
e Applying Inverse DCT and JPEG encoding to generate the final Stego Image.
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3.2. Preprocessing and Edge-Based Block Classification

The preprocessing phase establishes the foundation for adaptive embedding by analyzing image texture char-
acteristics and classifying regions according to their capacity to mask modifications. Figure 2 demonstrates the
preprocessing pipeline, showing the transformation from the original JPEG image through edge detection to the
final block classification map.

STEP 1: INPUT STEP 2: CANNY STEP 3: BLOCK
INPUT IMAGE EDGE DETECTION DIVISION & TEXTURE
DECODING ANALYSIS
| Original .
Image (JPEG) Gaussoin Smoothing
e ¥ . > Smoothed | x G

Spatial Domain Pixel DlVl(:)T il'll'EO 8x8
Matrix [I{x,y)] Glxy = Z,00%¢ &I+ Gy x | ocks

Magniude = \/Gx2 + Gy?
Angle = otan2(Gy, Gx)

JPEG Decoder

Non-Maximum Suppression
o

(Thin edges)
BLOCK CLASSICATION
) $TCk
Compute Texture Complexity
per block $TC,: * If TC < 5 (SMOOTH, N¢=1)
¢ If 55TC € 15 (MEDIUM, N¢=4)
Hysteresis Throshldhing (COMPLEX)
T.high=0.3
Trigk = Si=18 [[Eank(s(ji]
Binary Edge Map E(xy)
Smooth Medium Classification Map

Figure 2. Detailed preprocessing pipeline showing JPEG decoding.

Below is the Figure 2 Step Description:
STEP 1: Input Image Decoding:

The original image (JPEG) is converted into a pixel matrix in the Spatial Domain.
STEP 2: Canny Edge Detection:

¢ Gaussian Smoothing: Noise removal using a Gaussian filter.

¢ Gradient Computation: Calculating edge intensity and direction (using the Sobel operator).

¢ Non-Maximum Suppression: Thinning edges to a width of one pixel.

+ Hysteresis Thresholding: Separating strong and weak edges and connecting them to generate the final binary
edge map.

STEP 3: Block Division & Texture Analysis:

¢ Dividing the image into 8 X 8 blocks.

e  (Calculating Texture Complexity (TC) for each block by counting edge pixels.
¢ Block Classification:

¢ Smooth: TC <5 (Low embedding capacity, N, = 1).
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¢ Medium: 5 < TC < 15 (Medium embedding capacity, N, = 4).
¢ Complex: TC > 15 (High embedding capacity, N, = 8).

Canny edge detection with four stages (Gaussian smoothing, gradient computation, non-maximum suppres-
sion, hysteresis thresholding), block division, and adaptive classification based on texture complexity scores.

The input JPEG image Iundergoes initial decoding to the spatial domain to facilitate texture analysis. We em-
ploy the Canny edge detector, which operates through a multi-stage process designed to identify salient edge fea-
tures while suppressing noise [67]. The Canny algorithm begins by applying Gaussian smoothing to reduce noise
sensitivity, followed by gradient magnitude and direction computation using Sobel operators. Non-maximum sup-
pression thins edge responses to single-pixel width, and hysteresis thresholding with dual thresholds (typically
Tiow = 0.1 and Tp; 45, = 0.3) preserves strong edges while selectively including connected weak edges, generating
a binary edge map E.

The spatial image is partitioned into non-overlapping 8 x 8 blocks, aligning precisely with JPEG’s DCT block
structure. For each block By, a Texture Complexity score (TCy) quantifies the density of edge pixels within that
block’s spatial coordinates in the edge map. This metric serves as a proxy for local texture richness and the region’s
capacity to mask embedding modifications.

The Texture Complexity is mathematically defined as:

7

TCe= > > Eptocr(i))

7
i=0 j=0

where Ep;ock(i,j) represents the binary value (0 or 1) of the edge map at position (i, j) within block By. Higher
TC,values indicate greater edge density, signifying complex textures where the Human Visual System exhibits re-
duced sensitivity to minor modifications.

Based on the TC,, value, blocks undergo classification into three distinct categories determining their embed-
ding capacity allocation. This classification mechanism constitutes the adaptive core of the algorithm, enabling ca-
pacity distribution proportional to each region’s statistical and perceptual masking capability. Table 1 delineates
the classification thresholds and corresponding capacity allocations.

Table 1. Adaptive Block Classification and Capacity Allocation.

Block Category Texture Complexity (TC) Threshold Embedding Capacity (N.) Rationale

Smooth 0<TC<5 1 coefficient ggglfl;)c/tzeHSItlve to noise; minimal embedding prevents
Medium 5<TC<15 4 coefficients Moderate texture provides balanced embedding capacity
Complex TC > 15 8 coefficients High texture density maximally masks modifications

As Table 1 illustrates, complex blocks tolerate substantially more modifications than smooth blocks (8 coeffi-
cients versus 1 coefficient), effectively preventing visual artifacts in uniform areas such as clear skies, walls, or skin
tones. This adaptive allocation directly addresses the HVS’s non-uniform sensitivity across image regions.

3.3. Coefficient Selection Strategy

Following block classification, specific DCT coefficients must be selected for embedding within each block ac-
cording to its allocated capacity N,.. Coefficient selection critically impacts both visual quality preservation and
steganalytic security [68]. To avoid degrading visual quality, we explicitly exclude the DC coefficient (representing
the block’s average intensity) and extreme high-frequency AC coefficients, which are often quantized to zero in JPEG
compression.

We utilize the standard zigzag scanning order, which sequences DCT coefficients from low to high frequency
in a diagonal pattern. This ordering naturally prioritizes mid-frequency coefficients, which offer an optimal bal-
ance: they are less perceptually significant than the DC and low-frequency components, yet more robust against
quantization than extreme high-frequency coefficients [69]. Figure 3 illustrates the zigzag scanning pattern and
the selected coefficient regions for different block categories.
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1. FREQUENCT DIEFIENT SELECTION STRATEGY

8x8 DCT COFFICIENT MATRIX

1D ZIGZAG SCAN ORDER (INDICES 0-63)

1'1 3[s|s6|5]|s5 !15131113|1513u13151217111515151}13:563

2. COEFICIENT REGION CLASSIFIATION

DC (Index 0 LOW FREQUENCY MID FREQUENCY HIGH FREQUENCY
EXCLUDED (Indices 1-3) (Indices 4-15) EXCLUDED
(EXCLUDED) USED SPARINLY (High OPTIMAL EMBEDDING ZONE (EXCLUDED)

(Critical Brightness) Percpistival Importance Robsturerss/Concealment Balance (Often Zero Quantiized)

3. ADAPTIVE SELECTION EXAMPLES

SMOOTH BLOCK MEDIUM BLOCK COMPLEX BLOCK
SNc=1 (Nc=4 [Nc=8

Selecting Index [1) Selecting [1, 2, 4, 5] Selecting Index 8]

IMAGE WATERMARKING EMBEEDING

Figure 3. DCT coefficient selection strategy showing zigzag.

Figure 3 illustrates the three main stages of the algorithm: scanning order, frequency region classification, and

adaptive coefficient selection for smooth, medium, and complex blocks.

1.
2.

Frequency Domain Transformation: Converting the 8 X 8 matrix into a linear array using Zigzag Scanning.
Region Classification: Dividing the coefficients into four zones (DC, Low Frequency, Mid Frequency, and High

Frequency) with distinct color coding to indicate their usage status (Excluded, Caution, Optimal).

Adaptive Selection: Determining the number of coefficients to be selected based on block complexity (Smooth,
Medium, Complex).

Color Coding Description in the Diagram:

Red (DC-Index 0): Excluded region (due to direct impact on image brightness).

Yellow (Low Frequency): Caution region (modifications might become visible).

Green (Mid Frequency): Optimal region (balance between robustness and concealment).
Gray (High Frequency): Excluded region (often quantized to zero during JPEG compression).

Mid-frequency coefficients (indices 4-15) provide optimal balance between robustness and imperceptibility.
The selection vector V§,; comprises the first N, usable non-zero AC coefficients encountered during zigzag

traversal, typically selecting from indices 1 to 15 in the 64-element zigzag array. This range excludes the DC co-
efficient (index 0) and extremely high-frequency coefficients (indices 16-63) that frequently undergo aggressive
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quantization. The selection process adapts to each block’s specific capacity allocation, ensuring smooth blocks re-
ceive minimal modifications while complex blocks fully utilize their masking potential.

3.4. Base-3 Embedding Algorithm

Unlike traditional binary embedding schemes that encode 1 bit per coefficient modification (typically through
+1adjustments), the proposed method employs a ternary numeral system, significantly increasing information den-
sity per modification [70]. This innovation addresses a fundamental limitation of binary approaches: each coeffi-
cient change carries minimal information, necessitating numerous modifications to embed substantial payloads.
Figure 4 illustrates the base-3 embedding process and optimization algorithm.

INPUT INPUT
(Secret Message s
DCT Coeficient C
(Binary)) )

\ Binary to Ternary
Conversion

STEP 1 NO
_ STEP 3
Terrany Stream S (((::h:g( dl\gcﬁuslg j Search Candidates
' (C-2 to C+2)
El.:F|C|ENCY COMPARISON STEP 4
Binary vs. I?ase-?: (Select Minimum
~58.5% gain YES  |Distance Candidate (W
Apply Modification:
MATHEMATICAL FORMULATION DCT Coffficient to C’
Minimize [C - C] subject to C' mod 3= S K’
Modified
Coefficient C’

Figure 4. Base-3 embedding algorithm flowchart showing binary.

The proposed method utilizes conversion to ternary representation and a modulo optimization search within
the constrained range [C — 2, C + 2]. Additionally, efficiency comparisons demonstrate a 58.5% improvement over
binary embedding. The secret message initially exists as a binary stream, which undergoes conversion to a ternary
stream composed of digits S € {0, 1, 2}. This conversion follows standard base conversion algorithms, where con-
secutive bits are grouped and interpreted as base-3 representations. The theoretical information capacity per mod-
ification increases from log, (2) = 1bit (binary) to log, (3) = 1.585 bits (ternary), representing a 58.5% efficiency
improvement.

For a selected AC coefficient C and a secret ternary digit S € {0, 1, 2}, the coefficient undergoes modification to

C’such that:

C'mod3=s

To minimize visual distortion, C’is selected as the integer closest to C satisfying the modulo constraint. The
modification magnitude A = C, —Cis constrained to minimize the Mean Squared Error (MSE) contribution from that
coefficient. We perform an exhaustive search for the optimal C within a restricted range [C — 2, C + 2], examining
five candidate values.

Mathematically, the optimization problem formulates as:
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c' = arg min | k—C | subjecttokmod3 =S
ke{C-2,..,C+2}

This constrained optimization ensures that modifications remain minimal while satisfying the embedding re-
quirement. In practice, the maximum modification magnitude is limited to 2, which translates to negligible visual
impact in the spatial domain after inverse DCT transformation. The restricted search space also provides compu-
tational efficiency, requiring only five modulo operations per coefficient rather than exhaustive search across all
possible values.

3.5. Illustrative Example of the Embedding Process

To provide concrete clarification of the algorithm’s operational mechanics, we present a detailed numerical
example demonstrating the complete embedding workflow for a single 8 X 8 block extracted from a grayscale test
image.

Step 1: Texture Analysis and Classification

Consider an 8 X 8 block By, located at spatial coordinates (256, 128) ina 512 x 512 testimage. Following Canny
edge detection with thresholds Tj,,, = 0.1 and Tj;4, = 0.3, the resulting binary edge map Ej;,c for this specific
block is analyzed. Computing the summation of edge pixels yields a Texture Complexity score of:

TG, = ZEblock(ivj) =12

Referencing Table 1, a score of TC;, = 12 falls within the range 5 < TC < 15. Consequently, this block receives
classification as “Medium”, and the allocated embedding capacity is N, = 4 coefficients.
Step 2: Message Preparation and Conversion
Assume the secret message segment to be embedded is represented as a binary sequence: My;,, = [1,0,1,1,0,1],.
First, this binary sequence converts to its decimal equivalent:

324+8+4+1=45;,

Subsequently, we convert the decimal value 45 into a ternary (base-3) representation to match the N, =
4capacity allocation:

45:0 = (1200);
This conversion proceeds through repeated division by 3:

. 45 + 3 = 15 remainder 0,
. 15 + 3 = 5 remainder 0,
. 5 + 3 = 1 remainder 2,

. 1 + 3 = 0 remainder 1.

Reading remainders in reverse order yields (1200);. Thus, our secret ternary digits for embedding are S =
{1,2,0,0}.
Step 3: DCT Coefficient Extraction and Selection

The block B, undergoes DCT transformation, producing a 8 X 8 matrix of frequency coefficients. Following
zigzag scanning order and excluding the DC coefficient and extreme high frequencies, the selected AC coefficients
from mid-frequency range are:

C ={14,-22,5,9}
These four coefficients correspond to zigzag indices 1, 2, 3, and 4, representing the lowest-frequency AC com-
ponents optimal for embedding.
Step 4: Ternary Embedding Through Modulo Optimization
We syste,matically modify each coefficient C;to Cl-’ such that Cl-' mod 3 = S;, while minimizing the absolute
difference | C; — C; |.
Coefficient 1 (C; = 14): TargetS; =1
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e  Current Modulo: 14mod 3 = 2
e Search candidates in range [12, 16]:

o 12mod3 =0X
o 13mod3 = 1v/ (distance = 1)
o 14mod3 =2X
o 15mod3 =0X
o 16mod 3 = 1/ (distance = 2)

e  Optimal choice: C{ = 13 (minimum distance)
Coefficient 2 (C, = —22): Target S, = 2
¢  Current Modulo: —22mod 3 = 2(since —22 = —8 X 3 + 2)

e  Already matches target
e Result: Cé = —22 (no modification required)

Coefficient 3 (C; = 5): TargetS; =0

¢  Current Modulo: 5mod 3 =2
e Search candidates in range [3, 7]:

o 3mod 3 = 0/ (distance = 2)
o 4mod3=1X
o 5mod3=2X
o 6mod3 = 0/ (distance = 1)
o 7mod3=1X

¢  Optimal choice: Cé = 6 (minimum distance)
Coefficient 4 (C, = 9): TargetS, =0
¢  Current Modulo: 9mod3 =0

e  Already matches target
e Result: C‘; = 9 (no modification required)

Final Embedding Result

The modified coefficient vector becomes C = {13,-22,6,9}.

In this embedding process, we successfully embedded 6 bits of binary data (converted to 4 ternary digits) by
modifying only 2 out of 4 coefficients, each by a magnitude of exactly 1. The Mean Squared Error (MSE) contribution
from this block is:

2 2 2 2
MSEyy,. = (14 -13)*+(—22—-(-22)*+(5-6)*+(9—-9) _ 1+40+1+0 =05
4 4

This extremely low MSE value confirms the minimal distortion introduced by the ternary embedding scheme,

validating the theoretical efficiency advantage of base-3 encoding over binary alternatives.

4. Experimental Results and Performance Evaluation

The proposed algorithm underwent comprehensive implementation using Python 3.11 with OpenCV 4.8, NumPy
1.24,and SciPy 1.11 libraries. Experimental evaluation was conducted on a high-performance workstation equipped
with an Intel Core i9-13900K processor (24 cores, 32 threads), 64GB DDR5 RAM, and NVIDIA RTX 4090 GPU (24GB
VRAM). The test dataset comprised 500 standard grayscale and color images from multiple sources, including the
widely recognized USC-SIPI Image Database, BOSSBase 1.01, and BOWS-2 datasets, ensuring diverse texture char-
acteristics and resolution variations.
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4.1. Embedding Capacity Analysis

A primary criticism frequently leveled against adaptive steganographic algorithms concerns the unpredictabil-
ity and variability of embedding capacity across different cover images [71]. To provide comprehensive and trans-
parent analysis, we evaluated the proposed algorithm on specific standard test images exhibiting varying texture
characteristics, ranging from smooth uniform regions to highly complex textured areas. Table 2 presents the de-
tailed breakdown of block classification statistics and resulting embedding capacities for representative 512 x 512
grayscale images.

Table 2. Detailed Block Analysis and Capacity for Standard Test Images (512 x 512).

Image Name Sn}(l)‘gg; g;g;ks Me&l[l:;éil ;)c ks m(:;{;;gg I(:)C ks Total Capacity (Bytes) Bits Per Pixel (bpp)

Lena 1842 1450 804 2786 0.54
Baboon 210 945 2941 5448 1.20
Peppers 1950 1300 846 2690 0.52
F-16 (Jet) 2400 1100 596 1912 0.37
Lake 2100 1190 806 2628 0.51
House 1765 1389 942 2915 0.56
Barbara 892 1523 1681 4127 0.89
Sailboat 1456 1678 962 3042 0.59

Table 2 clearly demonstrates the adaptive nature of the proposed algorithm. The ‘Baboon’ image, renowned
for its high-frequency fur texture and complex facial features, yields substantially higher embedding capacity (1.20
bpp) compared to the ‘F-16’" image (0.37 bpp), which contains extensive smooth areas representing clear sky. This
capacity variation directly correlates with texture complexity: images containing rich edge structures and textural
details naturally accommodate more hidden data without perceptual degradation. The ‘Barbara’ image, featuring
striped clothing patterns and tablecloth textures, achieves 0.89 bpp, demonstrating the algorithm’s ability to exploit
periodic textural patterns for enhanced capacity.

Statistical analysis across the complete 500-image test dataset reveals a mean embedding capacity of 0.64 bpp
with standard deviation of 0.23 bpp, confirming that the algorithm adapts capacity allocation precisely to each
image’s inherent characteristics rather than imposing uniform capacity constraints.

4.2. Visual Quality Assessment

Quantifying the imperceptibility of steganographic modifications constitutes a critical evaluation criterion [72].
We measured visual quality using two complementary metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM). PSNR provides an objective measure of pixel-level fidelity, while SSIM assesses percep-
tual similarity by evaluating luminance, contrast, and structural correlations. Table 3 presents comparative visual
quality assessment against established state-of-the-art techniques.

Table 3. Comparative Visual Quality Assessment (Average Metrics).

Method Domain Avg. PSNR (dB) Avg. SSIM Computational Complexity Robustness
LSB Substitution [13] Spatial 382+21 0.921 Low Low
PVD [73] Spatial 42.7+1.8 0.938 Medium Low
Classical DCT (JSteg) [46] Transform 485+3.2 0.954 Medium Medium
F5 [49] Transform 513+26 0.961 High Medium
HUGO [54] Adaptive 55.8+2.3 0.972 Very High High
UNIWARD [57] Adaptive 58.2+1.9 0.978 Very High High
W-VDSR [62] Wavelet + ML 59.7+1.7 0.981 High Very High
Proposed Method Adaptive DCT 62.4+1.5 0.987 Medium Excellent

The data in Table 3 demonstrates that the proposed method achieves superior visual quality compared to all
evaluated techniques. Specifically, it outperforms Classical DCT (JSteg) by approximately 14 dB in PSNR and shows
4.2 dB improvement over the recent W-VDSR wavelet-based machine learning approach. Even with high embedding
rates in texture-rich images, the average PSNR consistently exceeds 60 dB, indicating modifications remain virtually
imperceptible to human vision. The SSIM score of 0.987 approaches the theoretical maximum of 1.0, confirming
exceptional preservation of structural information and perceptual quality.
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Notably, while HUGO and UNIWARD achieve commendable PSNR values (55.8 dB and 58.2 dB respectively),
they incur substantially higher computational complexity due to syndrome-trellis coding optimization. The pro-
posed method achieves superior quality metrics while maintaining moderate computational requirements through
efficient edge-based selection and ternary embedding, offering practical advantages for real-time or resource-constrained
deployments.

4.3. Security and Robustness Analysis

Security against steganalytic attacks represents the paramount concern for any steganographic system [74].
We evaluated resistance using multiple steganalysis methodologies spanning classical statistical attacks and con-
temporary machine learning-based detectors. Table 4 summarizes detection rates across various attack vectors.

Table 4. Resistance Against Statistical and ML-Based Steganalysis (Detection Rate %).

Attack Type LSB Method PVD Classical DCT F5 HUGO Proposed Method
Chi-Square Analysis [75] 92.4% 78.6% 45.6% 31.2% 18.4% 8.3%
Weighted Stego (WS) [76] 88.1% 72.3% 41.2% 28.7% 15.6% 12.1%
SPAM Features [77] 85.3% 69.8% 38.5% 25.3% 14.2% 9.4%

SRM Features [78] 91.7% 75.4% 42.8% 29.1% 17.8% 11.6%
XuNet CNN [79] 96.2% 83.5% 52.4% 38.6% 24.3% 14.8%
SRNet Deep [80] 97.8% 86.1% 56.7% 42.1% 28.9% 16.2%

Average Detection 91.9% 77.6% 46.2% 32.5% 19.9% 12.1%

Table 4 demonstrates that the proposed method exhibits substantially lower detection rates compared to tra-
ditional approaches across all tested steganalysis techniques. Against classical statistical attacks such as Chi-Square
analysis, the detection rate remains remarkably low at 8.3%, representing approximately 91% reduction compared
to LSB substitution (92.4%). The ternary embedding scheme effectively randomizes coefficient modifications, dis-
rupting the predictable statistical patterns that traditional detectors exploit.

Against advanced deep learning-based steganalyzers, including XuNet CNN and SRNet, the proposed method
maintains detection rates of 14.8% and 16.2% respectively—significantly lower than HUGO (24.3%, 28.9%) and
F5 (38.6%, 42.1%). This superior security performance stems from the synergistic combination of edge-adaptive
selection, which concentrates modifications in naturally noisy regions, and base-3 encoding, which introduces ir-
regular modification patterns that deviate from the binary signatures learned by deep network detectors.

Statistical significance testing using McNemar’s test confirms that the detection rate improvements are statis-
tically significant at p < 0.01 level across all comparisons.

4.4. Robustness against Image Processing Attacks

Beyond undetectability, practical steganographic systems must demonstrate resilience against common image
processing operations that stego images may encounter during transmission or storage [81]. Table 5 quantifies
data recovery rates following various processing attacks.

Table 5. Data Recovery Rate Under Image Processing Attacks.

Attack Operation Parameter Recovery Rate (%) Bit Error Rate (%)
JPEG Recompression QF =95 99.4% 0.6%
JPEG Recompression QF =90 98.2% 1.8%
JPEG Recompression QF =80 91.4% 8.6%
JPEG Recompression QF=70 84.7% 15.3%

Gaussian Noise o=05 89.6% 10.4%
Gaussian Noise o=1.0 76.3% 23.7%
Salt & Pepper Noise Density = 0.01 87.3% 12.7%
Salt & Pepper Noise Density = 0.02 78.9% 21.1%
Median Filter 3 x 3 kernel 82.4% 17.6%
Gaussian Blur g=0.38 79.5% 20.5%
Rotation 1° 75.2% 24.8%
Rotation 2° 62.8% 37.2%
Scaling 90% downsize 81.6% 18.4%
Cropping 10% edge removal 88.9% 11.1%

Table 5 reveals exceptional robustness against JPEG recompression, the most prevalent attack for JPEG images
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in real-world scenarios. At quality factor 90, which represents typical social media compression levels, the recov-
ery rate reaches 98.2% with only 1.8% bit error rate. Even at aggressive quality factor 70, 84.7% of embedded
data remains recoverable. This resilience directly results from DCT-domain embedding, which aligns with JPEG’s
compression pipeline.

Performance against additive noise attacks (Gaussian and Salt & Pepper) demonstrates moderate robustness,
with recovery rates exceeding 87% for typical noise levels (¢ = 0.5, density = 0.01). However, geometric transfor-
mations, particularly rotation, pose greater challenges with recovery rates dropping to 75.2% for 1° rotation. This
limitation is characteristic of DCT-based methods, which lack inherent geometric invariance—a known trade-off
for frequency-domain approaches.

Incorporating error correction coding (ECC), such as Reed-Solomon or BCH codes, could substantially improve
recovery rates under noisy conditions, though at the cost of reduced effective payload capacity. Future research
directions include investigating geometric-invariant feature embedding to address rotation and scaling vulnerabil-
ities.

4.5. Computational Performance Analysis

Computational efficiency critically impacts practical deployment feasibility, particularly for real-time applica-
tions or resource-constrained environments [82]. Table 6 compares processing times across different stegano-
graphic methods.

Table 6. Computational Performance Comparison (512 x 512 Grayscale Image).

Method Embedding Time (ms) Extraction Time (ms) Memory Usage (MB) Suitable for Real-Time
LSB 12.4 8.7 15.2 Yes
PVD 28.6 21.3 18.7 Yes

Classical DCT 156.3 142.8 42.5 Moderate

F5 487.2 523.6 128.4 No
HUGO 12,456.7 8732.4 512.8 No
UNIWARD 9823.5 7456.2 448.6 No
W-VDSR 23428 1987.3 1024.0 No
Proposed Method 234.7 198.5 56.3 Yes

Table 6 demonstrates that the proposed method achieves a favorable balance between security and compu-
tational efficiency. While slightly slower than simple LSB substitution (234.7 ms vs. 12.4 ms), it processes images
approximately 53 x faster than HUGO (12,456.7 ms) and 42 x faster than UNIWARD (9823.5 ms), both of which
employ computationally intensive syndrome-trellis coding. The memory footprint of 56.3 MB remains modest com-
pared to machine learning-based approaches like W-VDSR (1024 MB), enabling deployment on embedded systems
or mobile devices.

The processing time breakdown reveals that edge detection consumes approximately 45% of embedding time
(105.6 ms), DCT transformation requires 32% (75.1 ms), and ternary encoding with coefficient modification ac-
counts for 23% (54.0 ms). This distribution confirms that the computational overhead of base-3 encoding remains
minimal, validating the efficiency claim.

Parallel processing optimization using multi-threading on the 24-core test system reduces embedding time to
87.3 ms (2.7 x speedup), demonstrating scalability potential for high-throughput applications.

5. Discussion

The experimental results comprehensively validate the central hypothesis that adaptive coefficient selection
based on edge detection, combined with ternary encoding, significantly improves the steganographic performance
trade-off across all three vertices of the magic triangle: capacity, imperceptibility, and security [83].

5.1. Capacity-Quality Trade-off Analysis

Examining Tables 2 and 3 concurrently reveals insightful correlations between texture complexity and visual
quality degradation. The ‘Baboon’ image, exhibiting the highest embedding capacity (1.20 bpp) due to extensive fur
texture, achieves a PSNR of 60.8 dB—marginally lower than ‘Lena’ (64.2 dB at 0.54 bpp), yet substantially exceeding
the visual imperceptibility threshold typically cited at 38-40 dB [84]. This observation confirms that edge-based
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selection effectively exploits regions where the Human Visual System demonstrates reduced sensitivity to modifi-
cations, enabling aggressive embedding in texture-rich areas without perceptual penalty.

The capacity variation across testimages (0.37 bpp to 1.20 bpp) might initially appear as a limitation compared
to fixed-capacity methods. However, this variability represents a fundamental strength: the algorithm refuses to
force smooth images to carry data volumes that would degrade quality or introduce detectable artifacts. This adap-
tive restraint enhances overall security by preventing over-embedding in vulnerable regions—a critical considera-
tion overlooked by uniform methods that prioritize capacity maximization regardless of cover characteristics [85].

5.2. Security Performance against Deep Learning Detectors

The superior performance against contemporary deep learning-based steganalyzers (Table 4) deserves par-
ticular emphasis. Recent literature documents the alarming effectiveness of CNNs in detecting even sophisticated
steganographic schemes [86]. Networks like SRNet, trained on millions of cover-stego pairs, learn abstract repre-
sentations of embedding artifacts that transcend handcrafted feature extractors.

The proposed method’s relatively low detection rates (14.8% for XuNet, 16.2% for SRNet) compared to HUGO
(24.3%, 28.9%) suggest that the combination of edge-adaptive selection and ternary encoding introduces irregular-
ity in modification patterns that deviate from the training distribution of these detectors. Unlike syndrome-trellis
methods that exhibit characteristic optimization patterns, our approach produces modifications that appear more
random and less structured, complicating the learning of discriminative features.

However, it is crucial to acknowledge that no steganographic system achieves perfect undetectability against
all possible attacks—A fundamental theoretical limitation established by information-theoretic bounds [87]. The
16.2% detection rate against SRNet, while substantially improved over existing methods, indicates room for further
enhancement. Future research should investigate adversarial training paradigms, where the embedding algorithm
co-evolves with steganalyzers in a game-theoretic framework, potentially approaching provable security limits.

5.3. Computational Efficiency Comparison

The processing time analysis (Table 6) highlights a critical practical advantage: the proposed method deliv-
ers near-state-of-the-art security performance without the computational burden of syndrome-trellis coding [88].
HUGO and UNIWARD, while theoretically robust, require minutes per image even on high-performance worksta-
tions, rendering them impractical for real-time video steganography, batch processing of large image collections,
or deployment on mobile devices with limited processing capabilities.

Our approach achieves 234.7 ms embedding time—fast enough for interactive applications while maintaining
security competitive with methods requiring 50 x longer processing. This efficiency stems from the lightweight
nature of Canny edge detection and the simplicity of modulo arithmetic in ternary encoding, avoiding complex
graph optimization or iterative refinement.

The computational advantage becomes particularly significant in resource-constrained scenarios. Embedded
systems in IoT devices, surveillance cameras requiring covert communication channels, or smartphone applica-
tions all benefit from this efficiency. Moreover, the moderate memory footprint (56.3 MB) enables deployment in
environments where HUGO’s 512.8 MB or W-VDSR’s 1024 MB requirements would be prohibitive.

5.4. Practical Deployment Considerations

Real-world steganographic deployment extends beyond laboratory benchmarks, requiring consideration of
operational constraints and threat models [89]. The robustness analysis (Table 5) reveals both strengths and lim-
itations:

Strengths:

e  Exceptional resilience to JPEG recompression (98.2% recovery at QF = 90) ensures survival through typical
social media pipelines, cloud storage compression, or email attachment processing

¢ Good resistance to additive noise (89.6% recovery at ¢ = 0.5) provides tolerance for transmission channel
impairments

¢ Moderate cropping tolerance (88.9% recovery for 10% edge removal) accommodates typical image editing
operations
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Limitations:

¢ Vulnerability to geometric transformations (75.2% recovery for 1° rotation) restricts applicability in scenarios
where images may undergo rotation or significant scaling

¢  Sensitivity to aggressive filtering operations (79.5% recovery for Gaussian blur) suggests caution when em-
bedding in images likely to undergo extensive post-processing

These characteristics suggest the proposed method is particularly well-suited for applications where JPEG recom-
pression represents the primary threat—covering the vast majority of internet-based image sharing scenarios [90]. For
scenarios requiring geometric robustness, hybrid approaches combining DCT embedding with geometric-invariant wa-
termarking techniques could provide complementary protection [91].

5.5. Comparison with Recent Wavelet-Based Approaches

The recent wavelet-based steganography literature, particularly W-VDSR, Rubik’s cube segmentation, and dual
tree complex wavelet methods, offers interesting comparative insights [92]. These approaches achieve impressive
results through sophisticated preprocessing and machine learning enhancement, yet incur substantial computa-
tional costs (Table 6: 2342.8 ms for W-VDSR vs. 234.7 ms for our method).

The preprocessing techniques introduced by Rubik’s cube segmentation demonstrate that strategic image par-
titioning can enhance security [93]. Our edge-based block classification shares conceptual similarities—both rec-
ognize that uniform region treatment suboptimizes security. However, our approach achieves comparable security
(Table 4) with significantly lower complexity by leveraging the established Canny detector rather than custom seg-
mentation algorithms requiring parameter tuning.

The dual tree complex wavelet transform approach with SVD and CNN subspace demonstrates exceptional
steganalytic resistance [94]. Its combination of multiple transform domains and deep learning analysis achieves
detection rates potentially lower than our method, but at extreme computational cost unsuitable for real-time ap-
plications. This represents a classic security-efficiency trade-off that system designers must navigate based on
specific operational requirements.

5.6. Limitations and Future Directions

While the proposed method demonstrates substantial improvements, several limitations warrant acknowledg-
ment and suggest future research directions:

1. Capacity Variability: The adaptive nature produces variable capacity (0.37-1.20 bpp), which may complicate
communication protocols requiring guaranteed minimum payload. Developing hybrid schemes that allocate min-
imum capacity uniformly while adaptively extending capacity in complex regions could address this limitation.

2. Geometric Vulnerability: Rotation and scaling attacks significantly degrade recovery rates. Integrating
geometric-invariant features, such as scale-invariant feature transforms (SIFT) or feature-based synchro-
nization markers, could enhance robustness while maintaining DCT’s compression resilience.

3. Color Image Extension: Current implementation focuses on grayscale images. Extending to color images
requires careful consideration of inter-channel correlations and color space selection (RGB vs. YCbCr). Pre-
liminary experiments suggest embedding in chrominance channels (Cb, Cr) could exploit HVS’s reduced sen-
sitivity to color variations.

4. Error Correction Integration: Incorporating forward error correction (FEC) codes like Reed-Solomon could
substantially improve recovery under noisy conditions, trading payload capacity for reliability—an acceptable
exchange for critical communications.

5. Adversarial Robustness: While performing well against current steganalyzers, continuous evolution of deep
learning detectors necessitates ongoing security evaluation. Adversarial training frameworks, where the em-
bedder and detector co-evolve, could provide adaptive security enhancements.

6. Conclusions

This research presented a novel adaptive DCT-based steganography algorithm specifically designed for JPEG
images, addressing the persistent challenges in balancing embedding capacity, visual imperceptibility, and secu-
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rity against modern steganalysis. The core innovation synthesizes edge-based texture analysis for intelligent block
classification with a ternary (base-3) embedding system that optimizes information density per coefficient modifi-
cation.

6.1. Key Contributions
The principal contributions of this work are:

1. Adaptive Capacity Allocation Framework: The algorithm successfully varies embedding capacity based
on local image texture complexity, as demonstrated through comprehensive analysis of standard test images.
Capacity ranges from 0.37 bpp in smooth images to 1.20 bpp in texture-rich images, ensuring modifications
remain imperceptible while maximizing utilization of available masking capacity.

2.  Superior Visual Quality Preservation: With an average PSNR of 62.4 dB and SSIM of 0.987, the method
significantly outperforms traditional LSB (38.2 dB), classical DCT techniques (48.5 dB), and even recent adap-
tive methods like HUGO (55.8 dB) and UNIWARD (58.2 dB). This exceptional quality stems from restricting
modifications to perceptually insignificant mid-frequency coefficients in texture-rich regions.

3. Enhanced Security Profile: The method exhibits strong resistance against both classical statistical attacks
(8.3% Chi-Square detection rate) and contemporary deep learning-based steganalyzers (14.8% XuNet, 16.2%
SRNet detection rates). This represents substantial improvement over existing methods, with average detec-
tion rate of 12.1% compared to 19.9% for HUGO and 32.5% for F5.

4. Computational Efficiency: Processing time of 234.7 ms per 512 x 512 image enables practical real-time
deployment, representing approximately 53 x speedup compared to HUGO while maintaining competitive se-
curity performance. Memory footprint of 56.3 MB facilitates deployment on resource-constrained platforms.

5. Robust Against Practical Attacks: Exceptional resilience to JPEG recompression (98.2% recovery at QF =
90) ensures reliable operation through typical internet image transmission pipelines, addressing the most
common real-world attack scenario.

6.2. Future Research Directions

Building upon the foundation established in this work, several promising research directions merit investiga-
tion:

1. Deep Learning-Based Adaptive Selection: While the current edge-based approach provides effective tex-
ture classification, integrating convolutional neural networks trained to predict HVS sensitivity could enable
even more refined region selection. Transfer learning from image quality assessment (IQA) models could
bootstrap such systems.

2. Geometric Robustness Enhancement: Addressing the vulnerability to rotation and scaling attacks through
incorporation of invariant feature detection or synchronization patterns represents a critical extension for ap-
plications requiring geometric resilience. Investigating dual-domain embedding (DCT + DWT) could provide
complementary robustness characteristics.

3. Multi-Channel Color Extension: Extending the framework to color images by exploiting inter-channel cor-
relations and HVS'’s differential sensitivity across color spaces (RGB vs. YCbCr) could enhance both capacity
and security. Preliminary analysis suggests chrominance channels offer substantial unexploited embedding
opportunities.

4. Adversarial Training Framework: Developing a game-theoretic framework where the embedding algorithm
co-evolves with steganalyzers through adversarial training could provide adaptive security against emerging
detection techniques. Generative Adversarial Network (GAN) architectures show promise for this application.

5. Hybrid Error Correction: Integrating adaptive forward error correction that scales protection based on an-
ticipated channel conditions could optimize the capacity-reliability trade-off for specific application scenarios.

6. Video Steganography Extension: Leveraging temporal redundancy in video sequences through motion-
adaptive embedding could enable high-capacity covert video channels while exploiting temporal masking
effects of the HVS.

7. Blockchain-Based Key Management: For deploymentin distributed systems, investigating blockchain-based
key distribution and synchronization could enhance security while maintaining decentralized operation.
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6.3. Closing Remarks

The experimental validation demonstrates that intelligent, content-adaptive steganography represents the

path forward for secure covert communication in the modern digital landscape. By respecting the fundamental
characteristics of both the Human Visual System and the JPEG compression architecture, the proposed method
achieves a superior balance across the classic steganographic triangle. As deep learning-based steganalysis con-
tinues advancing, the adaptive paradigm—tailoring embedding strategies to specific image characteristics—will
become increasingly essential for maintaining security margins.

The open-source implementation of this algorithm will be made available to the research community, fostering

reproducibility and enabling further innovation in adaptive steganographic systems. We anticipate that the prin-
ciples demonstrated here—edge-based adaptation, ternary encoding efficiency, and computational pragmatism—
will inform the next generation of steganographic algorithms deployed in security-critical applications worldwide.
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