Can √5 be an Efficient Random Number Generator?

Digital Technologies Research and Applications

Article

Can √5 be an Efficient Random Number Generator?

Toppo , N. S., & Chakraborty, S. (2025). Can √5 be an Efficient Random Number Generator?. Digital Technologies Research and Applications, 4(3), 67–77. https://doi.org/10.54963/dtra.v4i3.1533

Authors

  • Nikhil Simon Toppo

    Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi 835215, India
  • Soubhik Chakraborty

    Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi 835215, India

Received: 15 August 2025; Revised: 4 October 2025; Accepted: 10 October 2025; Published: 25 October 2025

Random number generation is crucial in areas such as cryptography, simulations, and gaming. True random number generators (TRNGs) rely on unpredictable physical phenomena (e.g., thermal noise or quantum effects), whereas pseudo-random number generators (PRNGs) use deterministic algorithms seeded with an initial value. The choice of seed can significantly affect the statistical quality and security of PRNG outputs. This paper investigates the use of the irrational number  (approximately 2.2360679…) as a source of randomness. We describe how ’s non-repeating, non-terminating decimal expansion might serve as a high-entropy seed or number stream to enhance unpredictability. The methodology includes theoretical analysis of ’s properties (infinite sequence, normality conjectures) and statistical testing of sequences derived from ’s digits. We present a practical case study—a real-time Monte Carlo simulation using -based random sequences—to demonstrate the feasibility and performance of this approach. Results show that -generated sequences exhibit uniform distribution and pass standard randomness tests similar to conventional PRNGs. These findings imply that certain irrational numbers could be leveraged in hybrid random generation schemes. The paper concludes with implications for using mathematical constants in secure and reproducible simulations and outlines future research directions in irrational number-based PRNG design.

Keywords:

Randomness Pseudorandom Number Generator (PRNG) Irrational Seed Randomness Testing Monte Carlo Simulation

References

  1. Bailey, D.H.; Crandall, R.E. Random generators and normal numbers. Exp. Math. 2001, 10, 175–190.
  2. Champernowne, D.G. The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. 1933, 8, 254–260.
  3. Dutang, C.; Wuertz, D. A note on random number generation. Available online: https://cran.r-project.org/web/packages/randtoolbox/vignettes/fullpres.pdf (accessed on 23 January 2025).
  4. Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1998.
  5. L’Ecuyer, P. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 2007, 33, 22.
  6. Marsaglia, G. Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. USA 1968, 61, 25–28.
  7. Marsaglia, G. Index of /diehard (a battery of tests of randomness). Available online: http://stat.fsu.edu/pub/diehard/ (accessed on 29 January 2025).
  8. Matsumoto, M.; Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30.
  9. Panneton, F.; L’Ecuyer, P.; Matsumoto, M. Improved long-period generators based on linear recurrences modulo 2. ACM Trans. Math. Softw. 2006, 32, 1–16.
  10. Park, S.K.; Miller, K.W. Random number generators: good ones are hard to find. Commun. ACM 1988, 31, 1192–1201.
  11. Weyl, H. Über die Gleichverteilung von Zahlen mod Eins. Math. Ann. 1916, 77, 313–352.
  12. Chakraborty, S.; Haldar, S. Randomness Revisited Using the V Programming Language. Nova Science Publishers Inc.: New York, NY, USA, 2023.
  13. Ferguson, N.; Schneier, B. Practical Cryptography; Wiley Publishing: Indianapolis, IN, USA, 2003.
  14. Berezowski, M. Chaotic distribution of prime numbers and digits of π. SSRN Electron. J. 2019. DOI: https://doi.org/10.2139/ssrn.3562793
  15. Tezuka, S. Linear Congruential Generators. In Uniform Random Numbers; Springer: Boston, MA, USA, 1995; pp. 47–67. DOI: https://doi.org/10.1007/978-1-4615-2317-8_3
  16. Marsaglia, G. Xorshift RNGs. J. Stat. Softw. 2003, 8, 14. DOI: https://doi.org/10.18637/jss.v008.i14
  17. Ross, S.M. Nonparametric Hypotheses Tests. In Introductory Statistics, 3rd ed.; Academic Press: Boston, MA, USA, 2010.
  18. Martin-Löf, P. The definition of random sequences. Inf. Control 1966, 9, 602–619. DOI: https://doi.org/10.1016/S0019-9958(66)80018-9
  19. Karatsuba, A.; Ofman, Y. Multiplication of many-digital numbers by automatic computers. Dokl. Akad. Nauk SSSR 1962, 145, 293–294. DOI: http://mi.mathnet.ru/dan26729 (in Russian)
  20. Goldreich, O. On the foundations of modern cryptography. In Advances in Cryptology—CRYPTO ’97; Kaliski, B.S., Ed.; Springer: Berlin, Heidelberg, Germany, 1997; pp. 46–74. DOI: https://doi.org/10.1007/BFb0052227
  21. DeGroot, M.H.; Schervish, M.J. Probability and Statistics, 4th ed.; Pearson: London, UK, 2011.
  22. Rosen, K. Irrationality and Transcendence; Dover Publications: Mineola, NY, USA, 2014.
  23. Volchan, S.B. What is a random sequence? Am. Math. Mon. 2002, 109, 46–63.
  24. Tipler, P.A.; Llewellyn, R.A. Radioactive Decay and the Exponential Function; W. H. Freeman and Company: New York, NY, USA, 2003.
  25. O’Neill, M.E. PCG: A family of simple fast space-efficient statistically good algorithms for random number generation; Harvey Mudd College: Claremont, CA, USA, 2014.
  26. Lehmer, D.H. Mathematical methods in large-scale computing units. Annu. Comput. Lab. Harvard Univ. 1951, 26, 141–146.
  27. Kneusel, R.T. Random Numbers and Computers, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018.
  28. Nedvedova, M.; Marek, J. Pioneering works in the application of random numbers to digital art and linear programs of Zdeněk Sýkora. In Proceedings of the 32nd Spring Conference on Computer Graphics, Smolenice, Slovakia, 27–29 April 2016.
  29. Gentle, J.E. Computational Statistics; Springer: New York, NY, USA, 2009.
  30. Chakraborty, S. On why and what of randomness. DataCritica Int. J. Crit. Stat. 2010, 3, 1–13.

Copyright © UK Scientific Publishing Limited.