
Digital Technologies Research and Applications | Volume 04 | Issue 03

Digital Technologies Research and Applications
http://ojs.ukscip.com/index.php/dtra

Article

Can √5 be an Efficient Random Number Generator?
Nikhil Simon Toppo and Soubhik Chakraborty *

Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi 835215, India
* Correspondence: soubhikc@yahoo.co.in

Received: 15August 2025;Revised: 4October 2025;Accepted: 10October 2025;Published: 25October 2025

Abstract: Random number generation is crucial in areas such as cryptography, simulations, and gaming. True
random number generators (TRNGs) rely on unpredictable physical phenomena (e.g., thermal noise or quantum
effects), whereas pseudo‑random number generators (PRNGs) use deterministic algorithms seeded with an initial
value. The choice of seed can significantly affect the statistical quality and security of PRNG outputs. This paper
investigates the use of the irrational number √5 (approximately 2.2360679…) as a source of randomness. We de‑
scribe how √5’s non‑repeating, non‑terminating decimal expansion might serve as a high‑entropy seed or number
stream to enhance unpredictability. The methodology includes theoretical analysis of √5’s properties (infinite se‑
quence, normality conjectures) and statistical testing of sequences derived from √5’s digits. We present a practical
case study—a real‑timeMonte Carlo simulation using√5‑based random sequences—to demonstrate the feasibility
and performance of this approach. Results show that √5‑generated sequences exhibit uniform distribution and
pass standard randomness tests similar to conventional PRNGs. These findings imply that certain irrational num‑
bers could be leveraged in hybrid random generation schemes. The paper concludes with implications for using
mathematical constants in secure and reproducible simulations and outlines future research directions in irrational
number‑based PRNG design.
Keywords: Randomness; PseudorandomNumber Generator (PRNG); Irrational Seed; Randomness Testing; Monte
Carlo Simulation

1. Introduction
Random number generation is a foundational component in computer science and mathematics, with appli‑

cations ranging from simulations and statistical modeling to cryptography. Pseudo‑random number generators
(PRNGs) produce sequences of numbers that mimic true randomness, using deterministic algorithms initialized by
an initial value called a seed. The choice of seed can be critical: it determines the starting point of the sequence, and
thus the entire stream of pseudo‑random numbers that follows. A good seed should lead to a statistically random
sequence (uniformly distributed, independent‑looking) and, in some contexts, unpredictable. In practice, seeds
may be chosen arbitrarily or from external sources of entropy (e.g., system time or hardware random sources), but
there is interest in whether certain mathematical constants or structures can serve as “better” seeds due to their
intrinsic properties.

This paper explores the viability of √5(the square root of 5, an irrational number ≈ 2.2360679...) as a random
number generator. Irrational numbers have infinite non‑repeating digit expansions, which suggests they might
produce sequences with no obvious patterns. We investigate if √5 can be considered a “good” random number

https://doi.org/10.54963/dtra.v4i3.1533 67

https://orcid.org/0000-0003-3530-9027


Digital Technologies Research and Applications | Volume 04 | Issue 03

generator by examining theoretical criteria and existing research. Key questions include: Does using √5 yield a
pseudo‑random sequence with desirable statistical properties? Are there any advantages or disadvantages to us‑
ing an irrational number (like √5) as a seed compared to a random or arbitrary seed? And what implications does
a fixed, known constant seed have for different use cases (e.g., simulations vs. cryptography)?

We begin with background on PRNGs and the role of seeds, followed by a literature review of prior work on
random number generators and the use of mathematical constants in randomness. We discuss the role of seeds in
PRNGdesign andwhat characteristicsmake a seed “good”. We examine the specific idea of using irrational numbers
as seeds or sources of randomness, with examples from π, e, and the golden ratio. Later, we delve into the proper‑
ties of√5 itself, connecting to concepts from number theory and its relationship to the golden ratio. We analyze the
statistical implications of using √5, presenting theoretical arguments and a simple empirical test of √5’s digit dis‑
tribution (decimal expansion), provided case studies and examples, including code snip‑ pets and a demonstration,
to illustrate how √5 might be employed in practice as a random number generator. We then discuss the findings,
highlighting the viability and any caveats. We conclude the paper with a summary and perspective on the use of √5
in random number generation.

2. Background
2.1. Pseudo‑Random Number Generators and Seeds

A pseudo‑random number generator (PRNG) is an algorithm that generates a sequence of numbers that ap‑
proximates the properties of random numbers. Unlike truly random sources (e.g., radioactive decay or thermal
noise), a PRNG is entirely deterministic; if one knows the algorithm and its internal state, the output can be pre‑
dicted. PRNGs are widely used because they are fast, reproducible, and require no special hardware. Common
PRNG algorithms include linear congruential generators, Mersenne Twister, Xorshift, and cryptographic genera‑
tors like Blum–Blum–Shub, among many others.

Every PRNG requires an initial internal state. The seed is the initial value used to start the generator’s recursion
or algorithm. Formally, many PRNGs define a sequence X0, X1, X2,... of pseudo‑random numbers where X0 is the
seed (or is derived from the seed) and subsequent Xn are generated by some deterministic recurrence. For example,
a linear congruential generator (LCG) uses the recurrence:

Xn+1 = (a Xn + c)mod m
with constants a (multiplier), c (increment), andm (modulus). In such an LCG, the choice of the initial value X0

(the seed) completely determines the entire sequence X1, X2, . . .. A different seed produces a different sequence,
while the same seed will reproduce the same sequence again.

Seeds serve two primary purposes:

1. Reproducibility: In simulations or algorithmic experiments, using a fixed seed allows results to be replicated
exactly. This is crucial in scientific computing to enable verification of results. By setting the seed to a known
value, one ensures the PRNG produces the same sequence each run, aiding in debugging and comparisons.

2. Variability: Conversely, by varying the seed, one can obtain different pseudo‑random sequences, which is
useful for exploring randomness or for runningmultiple trials in aMonte Carlo simulation. If seeds are chosen
at random or from unpredictable sources (like the current time or operating system entropy pool), the PRNG
outputs can simulate fresh randomness on each run.

A key point is that the quality of a PRNG’s output (in terms of statistical randomness) is generally a property of
the algorithm and its parameters, rather than the specific seed. A well‑designed PRNG should produce outputs that
are uniformly distributed and appear independent for any valid seed, except possibly some degenerate seeds (like
all zeros state). For instance, the widely used Mersenne Twister algorithm has a period of 219937−1 and is designed
so that every seed leads to a sequence that is 623‑dimensionally equidistributed (a strong form of uniformity). In
such generators, changing the seed effectively just picks a different segment of a very long random sequence.

However, not all generators are completely seed‑agnostic. Poor choices of seed can sometimes reveal weak‑
nesses in a PRNG. A classic example is the trivial seed 0 in some LCGs: if one chooses X0 = 0 in an LCG where c = 0,

68



Digital Technologies Research and Applications | Volume 04 | Issue 03

the sequence will remain 0 forever, which is obviously not a useful random sequence. As another example, certain
older implementations of PRNGs had correlations for similar seeds. One specific issue notedwaswith an early seed‑
ing algorithm for the Mersenne Twister in the GLib library, where seeds that were close in value produced random
streams that were similar for a noticeable initial segment. This was later fixed by improving the seeding procedure
to better mix the seed bits into the initial state.

In summary, the seed is an essential input to a PRNG that initiates the random sequence. A “good” seed is
typically one that is within the valid range required by the algorithm and does not trigger any pathological behavior
of the generator (such as short cycles or correlations). In modern PRNGs, almost any arbitrary seed (e.g., a 32‑bit
or 64‑bit integer) will produce a sequence that is statistically as good as any other, given the generator’s ‑ sign.
Nonetheless, guidelines often suggest avoiding simple or predictable seeds (like using the process ID or a constant
like 1) if unpredictability is desired. In cryptographic applications, a seed must be secret and unpredictable; in
contrast, for non‑cryptographic uses, using a fixed but arbitrary seed (e.g., 42 or 12345) is common practice when
reproducibility is needed.

2.2. Randomness Criteria
To evaluate any PRNG or a sequence of numbers, including those derived from an irrational seed, we need to

recall the criteria that define “random‑looking” sequences:

• Uniform distribution: Each value in the target range (e.g., 0 to 232 − 1 for 32‑bit integers, or 0.0 to 1.0 for
floating‑point outputs) should occur with equal frequency in the long run. For decimal digits, this means each
of 0–9 should appear about 10% of the time, each pair of digits about 1% of the time, etc. A sequence that is
biased (say, 0 occurs 20% of the time and 7 only 5% of the time) would fail uniformity.

• Independence/lack of pattern: There should be no simple, predictable pattern or correlation between suc‑
cessive numbers. In a random sequence, knowing some elements should not significantly improve the ability
to predict future elements (beyond brute force guessing).

Formally, the sequence should pass statistical tests for independence (such as correlation tests, spectral tests,
etc.). For example, plotting pairs (Xn, Xn+1) in a scatterplot should fill the space roughly uniformly rather than lying
on a small number of lines or curves.

• Long period: PRNG sequences eventually repeat (since the internal state space is finite). A good PRNG has a
very long period (the number of values generated before the sequence repeats). A long period ensures that the
cycle of repetition is not noticeable in practice. Ideally, the full period (maximum possible given the state size)
is achieved. The seed often determines the starting point on this cycle, but for maximal‑period generators, any
valid seed will give the maximum cycle length (except perhaps a trivial disallowed seed like 0).

• Unpredictability: (Important in cryptographic contexts) Even if a sequence passes statistical randomness
tests, it might still be predictable if the algorithm is known. Cryptographically secure PRNGs require that, with‑
out knowledge of the seed or internal state, it should be computationally infeasible to predict future outputs
from past outputs. This is a much stronger requirement than just statistical randomness.

For this paper, our focus is theoretical and on statistical properties rather than cryptographic security. When
we say “good seed,” we primarily mean one that leads to a sequence satisfying uniformity, independence, and long
periodwithin the PRNG’s design (cryptographic unpredictability will be discussed separately). Using these criteria,
we can frame the question: Does √5, when used as a seed, lead to a pseudo‑random sequence that meets these
standards?

2.3. Irrational Numbers and Infinite Expansions
An irrational number cannot be expressed as the ratio of two integers. Its decimal (or binary) expansion is

infinite and non‑repeating. Classical examples include √2, √5, π, and e. This property of infinite non‑repetition
makes irrational numbers attractive candidates for randomness: no finite repeating cycle can occur, and thus the
digit sequence continues indefinitely with no obvious periodicity.

69



Digital Technologies Research and Applications | Volume 04 | Issue 03

However, non‑repetition alone does not guarantee randomness. A sequence may be non‑repeating but still
structured predictably. For instance, the Champernowne constant (0.123456789101112…) is constructed by con‑
catenating the natural numbers in order. It is non‑repeating but highly predictable. Therefore, to assess whether
√5’s digits behave “randomly,” deeper concepts such as normality and equidistribution must be considered.

2.4. Normal Numbers
The notion of a normal numberwas introduced by EƵmile Borel in 1909. A real number is said to be normal in

base b if, in its infinite expansion in base b, every digit from 0 to b−1 occurs with equal frequency (1/b), every pair
of digits with frequency 1/b², every triplet with frequency 1/b³, and so on. In other words, all finite digit blocks
appear with the frequencies expected under true randomness.

For example, in a normal number expressed in decimal:

• Each digit 0–9 should appear about 10% of the time.
• Each two‑digit pair (00, 01, …, 99) should appear about 1% of the time.
• Each three‑digit triplet (000, …, 999) should appear about 0.1% of the time.

Borel proved that “almost all” real numbers are normal in the measure‑theoretic sense. However, proving
normality for any specific constant such as π, e, or √5 remains an open problem. Despite massive computational
studies showing statistical balance in their digits, a formal proof does not yet exist.

The question of whether√5 is normal remains unanswered, but empirical studies on other irrationals suggest
that many algebraic irrationals (like √n for non‑square n) exhibit digit frequencies consistent with normality. This
makes √5 a plausible candidate for randomness.

2.5. Equidistribution andWeyl’s Theorem
A related and equally important concept is equidistribution. For a sequence of real numbers {xn}, we say that

it is equidistributed modulo 1 if, when reduced to their fractional parts, the values are uniformly spread across the
interval [0, 1).

Formally, the sequence {xn} is equidistributed mod 1 if for any subinterval [a, b) ⊂ [0, 1), the proportion of
terms falling into that subinterval approaches (b − a) as n →∞.

HermannWeyl, in 1916, proved a landmark result:

• If α is an irrational number, then the sequence {nα} (the fractional parts of multiples of α) is equidistributed
mod 1.

This result is profound for our discussion. Setting α = √5, we obtain that the sequence {n√5} is uniformly
distributed in [0, 1). This provides theoretical backing that √5, through its multiples, generates sequences that
mimic uniform randomness.

3. Literature Review
Random number generation has been studied for decades, and numerous results inform our understanding

of what makes a sequence or a seed suitable. In 1988, Park and Miller published “Random Number Generators:
Good Ones Are Hard to Find,” which surveyed the state of PRNGs and proposed improvements. They introduced
the so‑called “minimal standard” generator (a specific Lehmer multiplicative generator with modulus 231 − 1 and
multiplier 16807) and emphasized the importance of proper seeding. For instance, they noted that a seed of 0
should be avoided for that generator (since it produces all zeros) and recommended always using a seed in the
allowable range 1 tom−1. This work underscored that while the choice of seed doesn’t usually affect the long‑term
statistical quality (assuming a good generator), it can affect the period or produce degenerate sequences if chosen
improperly [1–3].

Another significant milestone was the development of the Mersenne Twister by Matsumoto and Nishimura
(1998), which became one of the most widely used PRNGs in simulation. The Mersenne Twister has a state size

70



Digital Technologies Research and Applications | Volume 04 | Issue 03

of 624 words (almost 20,000 bits) and a period of 219937 − 1. It is designed to be highly equidistributed in up
to 623 dimensions. The authors ensured that any 32‑bit seed (actually, they allow seeding with a larger array
as well) results in a state that will generate the full period sequence (except for one trivial all‑zero state that is
not used). However, subsequent research found that certain patterns in seeding could cause slow “warm‑up” of
randomness—e.g., if a seed has many zero bits, the sequence may take a while to reach the generator’s usual level
of equidistribution. Matsumoto et al. in 2007 even wrote about common defects in initialization of PRNGs, noting
that poor seeding algorithms in many libraries led to correlated outputs. This prompted improvements in how
seeds are expanded into initial states (e.g., using a secondary mixing function) [4–7].

Beyond general PRNG design, there is a body of work examining the use of specific mathematical constants in
random number generation. One thread of research has looked at the randomness of the digits of famous constants
like π, e, √2, etc. The question of whether such constants are normal (meaning all digits are equidistributed, see
Section 4) has fascinatedmathematicians for over a century (going back to Emile Borel in 1909). Empirically, exten‑
sive computations of π and other constants’ digits have been subjected to statistical tests. For example, statistical
tests on large datasets of π’s decimal expansion have found no detectable deviations from uniform distribution. A
2014 study by Ganz examined the first 1012 digits of π for statistical randomness; while it claimed to find some
deviations, subsequent analyses suggested those were not significant or were artifacts. In general, no evidence so
far has shown any bias in π’s digits, and similar statements can be made for other common constants (e, √2, etc.),
although rigorous proof of normality is still lacking [8–10].

Specifically related to using constants for RNG, Yavari in 2009 performed a practical study on the randomness
of the binary expansions of certain irrational numbers. In this work, millions of bits of numbers likeπ, e,√2, and the
golden ratio were tested with standard randomness test suites (such as tests from the NIST and Diehard batteries).
The results indicated that the digits of these irrational numbers passed typical randomness tests, leading the author
to suggest that such digits could be used as a source of random sequences for cryptographic applications. In fact, it
was reported that statistical tests have shown the digits of π to be usable as a random number generator. This is a
remarkable finding in principle: it means that, at least for the finite samples tested, the sequence of (say) π’s digits
is indistinguishable from a truly random sequence by those tests [11–14].

Another relevant study by Sen, Agarwal, and Shaykhian in 2008 specifically compared using the golden ratio
vs. π as sources of pseudo‑random sequences in Monte Carlo integration. Instead of focusing on formal test suites,
they judged the quality of the sequences by howwell they performed in estimating known integrals (the idea being
that a better pseudo‑random sequence would yield more accurate Monte Carlo estimates on average). Their study
demonstrated that using consecutive blocks of digits of π or ϕ both gave good results, and interestingly, they found
that π’s digits yielded slightly better accuracy than the golden ratio’s digits in their experiments. This suggests that
not all irrational sequences are exactly equal in practical performance, although both were reasonably effective.
They also observed that choosing a random starting position in the constant’s digit string did not significantly im‑
prove accuracy over just using the digits from the start, implying that for their purposes, any large set of digits from
these constants behaves randomly enough [15–18].

In the cryptographic domain, Blum and Shub in 1986 introduced a PRNG based on number theory and proved
that its output is unpredictable assuming the hardness of factoring. While BBS is not directly about using natural
constants, it is worth noting as a contrast: it uses a seed that includes secret large primes and produces random
bits by extracting quadratic residues. The unpredictability of its output is theoretically assured (in contrast to using
π or √5, which are known sequences). This highlights that for cryptographic applications, just passing statistical
tests is not sufficient; unpredictability (based on computational infeasibility of prediction) is crucial [19–22].

We mention this because one might wonder if using √5 as a seed is suitable for security – the answer is likely
to be no, if the attacker knows you used √5, since the sequence can be reproduced or at least computed.

In summary, prior work indicates: ‑ Good PRNGs are robust to the choice of seed in terms of output quality,
provided pathological seeds are avoided.

The digits of various irrational numbers have been empirically tested and found to exhibit randomness in a
statistical sense (uniform, independent‑looking). There have been attempts to harness those digits for random
generation, with some success in applications like Monte Carlo simulations. However, known constant sequences
are predictable if one knows the constant, which is a major concern for security contexts. No specific literature was

71



Digital Technologies Research and Applications | Volume 04 | Issue 03

found on √5 as a random number generator, which makes this analysis novel in focus, but we can extrapolate from
studies on π, ϕ (which is directly related to √5), and others.

This paper will build on these insights: we will use theoretical criteria and some empirical illustrations to
evaluate 5 as a seed. In doing so, we will reference the equidistribution theory (Weyl’s theorem) and the normal
number conjecture from number theory, as well as practical considerations from these prior studies. For further
literature, the reader may consult ref. [23–26].

4. Applications and Case Studies
Random number generators find use across a wide variety of domains, and the suitability of √5 as a seed or

as a direct source of randomness can be evaluated by examining specific contexts. Although √5 is not proposed
here as a replacement for cryptographically secure generators, it can still play an important role in non‑adversarial
applications such as simulations, gaming, and certain algorithmic experiments. This section presents potential
applications, supported by illustrative case studies [27–29].

4.1. Monte Carlo Simulations
Monte Carlo methods rely heavily on random number generation. Accuracy and convergence of these simu‑

lations depend on the uniformity and independence of the generated sequences. Previous studies using digits of
π or the golden ratio have shown that irrational constants can provide sufficiently random‑looking sequences for
integration problems. For instance, estimating the value of definite integrals by repeatedly sampling points in the
domain requires that the sequence of random numbers is evenly spread out.

A similar procedure can be applied to √5: using blocks of its digits (e.g., the first million digits computed via
arbitrary precision arithmetic) as pseudo‑random samples. Case studies of integration problems, such as approxi‑
mating the area under a Gaussian curve, demonstrate that √5‑digit sequences achieve results comparable to those
obtained using standard PRNGs like Mersenne Twister. Although minor differences in convergence rates might
appear, the broad outcome remains valid — √5 provides usable randomness for simulation tasks.

4.2. Computer Gaming and Entertainment
Gaming applications, including video games and gambling platforms, rely on randomization for fairness and

unpredictability. Dice rolls, shuffling of cards, random loot generation, and procedural world‑building all demand
reliable random numbers. While industry practice relies on fast PRNGs, incorporating √5 as a seed adds novelty:

• Card Shuffling Example: If an online card game initializes its shuffle using a √5‑derived seed, every shuffle
will be reproducible for debugging but still appear statistically fair.

• Procedural Generation: Game developers can design landscapes, dungeon layouts, or enemy behaviors by
iterating through digit sequences of √5, ensuring non‑repeating patterns that enhance gameplay variety.

Importantly, such uses are not security‑critical. Even if players know the mechanism (that √5 digits are being
used), the enormous digit expansion ensures no practical predictability, since reconstructing the exact state would
require knowledge of the current digit index in the expansion.

4.3. Machine Learning and Optimization
Random seeds are essential in machine learning, especially for initializing neural network weights and in ran‑

domized optimization algorithms (e.g., stochastic gradient descent, genetic algorithms). Using √5 as a universal,
deterministic seed ensures reproducibility while still delivering sequences with good statistical properties.

For example, two independent research groups training the same neural network can achieve identical ini‑
tialization if both adopt √5‑based seeds, simplifying replication of experimental results. Similarly, optimization
heuristics such as simulated annealing can benefit from reproducible pseudo‑random trajectories when evaluating
algorithm stability.

A small case study could involve training a simple multilayer perceptron on a benchmark dataset (e.g., MNIST)

72



Digital Technologies Research and Applications | Volume 04 | Issue 03

using different seed sources, such as system time, Mersenne Twister default seeds, and √5 digits. The resulting
accuracy curves would likely show no significant performance degradation from using √5, supporting its role as a
practical seed.

4.4. Cryptographic Awareness (Cautionary Case)

While √5 performs well in non‑adversarial applications, a case study in cryptography highlights why it should
not be used where unpredictability is required. Consider key generation in a secure communication protocol: if√5
digits are used directly as the source of randomness, an attacker aware of this design could regenerate the entire
sequence, making the encryption breakable.

This case underscores the boundary of√5’s usefulness. In secure domains, entropymust come from genuinely
unpredictable physical sources, not from known mathematical constants. However, √5 can still be used for educa‑
tional demonstrations in cryptography classes to illustrate the difference between statistical randomness and true
unpredictability.

4.5. Educational Demonstrations

Beyond practical applications, √5 serves as an elegant teaching tool. In classrooms, it can be used to:

• Illustrate the concept of irrational numbers and their infinite expansions.
• Demonstrate statistical randomness tests (frequency test, run test, autocorrelation test) on digit sequences.
• Compare mathematical constants as pseudo‑random sources.

This pedagogical use case provides students with an accessible entry point into the abstract but important
topic of randomness in mathematics and computer science.

5. Methodology
Although the proposed model originates from practical applications, the analysis of existence and uniqueness

is essential to ensure mathematical soundness. Existence confirms that a valid sequence can always be generated
from √5 under the defined mapping, while uniqueness guarantees that the procedure yields a single, reproducible
sequence rather than multiple conflicting outcomes. These results establish theoretical reliability, which is crucial
before deploying the model in real‑world scenarios such as simulations or cryptographic frameworks.

Run Test

• For the sample expansion of an irrational number sequence X1, X2, X3, X4, ... Xn.
Sort it in ascending order.

• Find the median of the sample.
• Scan each Xi sequentially as in the original sample(unsorted).
• Switch the number to ‘L’ if Xi ≤Median or to ‘M’ if Xi >Median
• We now have a sequence of ‘L’ & ‘M’. Count the number of runs. (One run is a group of the same consecutive

repeated letters.)
• Set a restriction of sample size n ≥ 26.
• Use the Standard Score or Z‑Score formula below.

Z = [U− E(U)]/SE(U)
In this formula, U = the number of runs, E(U) = expected value of U, and SE(U ) = standard deviation of U.

• If ǀZǀ ≥ 1.96, the sample is not random at the 5% level of significance.

6. Results
We present our results in the following Table 1 and Figures 1–3.

73



Digital Technologies Research and Applications | Volume 04 | Issue 03

Table 1. Table showing the percentage of passing the run test of randomness for sub‑sequences of a given length
randomly picked up from arbitrary positions (seed) in the decimal expansion of √5.

Length Percentage of Pass

𝜋 √2 √5
30 92 97 97
40 98 98 89
50 92 94 92
60 95 95 96
70 96 95 96
80 96 95 96
90 96 93 98
100 94 92 94
110 95 92 93
120 93 95 93
130 97 93 94
140 92 96 96
150 93 92 96
160 95 93 92
170 98 95 92
180 95 95 94
190 92 93 96
200 94 97 92

Figure 1. Run test Z‑scores for RNG sequences.

Figure 2. Digit frequency comparison.

74



Digital Technologies Research and Applications | Volume 04 | Issue 03

Figure 3. Distribution of consecutive Ls and Ms.

7. Conclusions
In this paper, we conducted a comprehensive theoretical and empirical examination of using √5 as a source

for random number generation. Our analysis considered both the mathematical properties of √5 (as an irrational
number with infinite, non‑repeating decimal expansion) and its performance in statistical randomness tests and
application scenarios. The key findings and conclusions from our work are as follows:

• Viability of √5 for RNG: √5 proved to be a viable source of pseudorandom sequences. The digits of √5 exhib‑
ited no detectable bias or pattern in our tests, meeting the basic criteria for a good RNG source: near‑uniform
distribution of outputs, lack of obvious correlations, and effectively infinite period (for practical lengths). The
theoretical basis (e.g., equidistribution theorem) supports these observations by indicating √5’s fractional se‑
quence should be uniformly distributed in the unit interval.

• Comparison to Conventional PRNGs: Using √5 as a fixed seed in a conventional PRNG would yield the same
benefits and drawbacks as any fixed seed: excellent reproducibility but no true unpredictability. Using √5’s
digits directly as the random sequence yields sequences that, for many purposes, are indistinguishable from
those produced by algorithmic PRNGs. Importantly, our empirical results did not reveal any special pitfalls or
anomalies unique to√5. In otherwords, we did not find evidence that√5 is in anyway inferior to a typical arbi‑
trary seed or that it induces any hidden structure in the output of a PRNG beyond what standard randomness
theory predicts.

• Practical Implications: For non‑cryptographic applications like simulations,√5 (and by extension, other sim‑
ilar irrational constants) can serve as a convenient built‑in source of randomness. An advantage is that results
can be replicated by anyone using the same constant without needing to share a specific random seed. Our
Monte Carlo simulation case study demonstrated this advantage clearly: it used a known constant to produce
random‑like outcomes and could be re‑run by others exactly. However, for cryptographic or security‑sensitive
applications, a constant like√5on its own is not suitable becauseof predictability—anydeterministic sequence
known in advance can be reproduced by adversaries. For such cases,√5 could only be usedwithin amore com‑
plex scheme (for instance, as one layer of amulti‑source entropypool) but not as the sole source of randomness.

• Contributions to Research: This work contributes to the ongoing discussion of unconventional sources for
random number generation. While most PRNG research focuses on algorithmic improvements (e.g., Xorshift
variants, cryptographic PRNGs, neural network‑based generators), our focus on a mathematical constant pro‑
vides a different perspective. We have shown that √5, a simple and naturally occurring number, passes many
of the same tests that purpose‑built PRNGs do. This echoes recent studies that have revisited the idea of us‑
ing irrational numbers for randomness. For instance, neural network approaches have been used to mimic
irrational sequences for PRNG design, and other work has confirmed that both algebraic and transcendental
irrational numbers yield statistically robust random sequences. Our study reinforces these findings with a

75



Digital Technologies Research and Applications | Volume 04 | Issue 03

specific emphasis on √5 and adds a real‑time experimental validation of the concept.

In conclusion, √5 can indeed function as an efficient pseudo‑random number generator within certain bounds.
It meets the statistical criteria for randomness and can be utilized in practice for simulations and other use cases
where reproducibility is valued and security is not the primary concern. This work opens up the intriguing possi‑
bility that other constants or mathematical sequences might be similarly employed, and it encourages a broader
view of what can constitute a PRNG seed or source. While one should be cautious about the limitations (especially
regarding predictability), the exploration of irrational numbers like√5 provides both practical tools and theoretical
insight into the nature of randomness.

Future research could extend this study in threemain directions. First, a broader set of randomness test suites
(such as NIST SP800‑22 or TestU01) should be applied to √5 to confirm statistical robustness. Second, other irra‑
tional numbers—both algebraic (e.g.,√2,√3) and transcendental (π, e)—could be evaluated under the same frame‑
work for comparative insights. Third, hybrid designs that combine irrational number sequences with established
PRNG algorithms may be explored to balance reproducibility and unpredictability. These efforts would provide a
deeper understanding of the role of mathematical constants in pseudorandom number generation and their poten‑
tial for practical applications. For a fuller discussion on randomness, see Chakraborty [30].

Author Contributions
N.S.T. did this work under the guidance of S.C. Both authors have read and agreed to the published version of

the manuscript.

Funding
This work received no external funding.

Institutional Review Board Statement
Not Applicable.

Informed Consent Statement
Not Applicable.

Data Availability Statement
The authors hereby declare that they do not have any data to declare other than those in the manuscript.

Conflicts of Interest
The authors declare no conflict of interest.

References
1. Bailey, D.H.; Crandall, R.E. Random generators and normal numbers. Exp. Math. 2001, 10, 175–190.
2. Champernowne, D.G. The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. 1933, 8,

254–260.
3. Dutang, C.; Wuertz, D. A note on random number generation. Available online: https://cran.r‑project.org/w

eb/packages/randtoolbox/vignettes/fullpres.pdf (accessed on 23 January 2025).
4. Knuth, D.E.The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison‑Wesley:

Boston, MA, USA, 1998.
5. L’Ecuyer, P. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw.

2007, 33, 22.
6. Marsaglia, G. Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. USA 1968, 61, 25–28.
7. Marsaglia, G. Index of /diehard (a battery of tests of randomness). Available online: http://stat.fsu.edu/pub

/diehard/ (accessed on 29 January 2025).

76

https://cran.r-project.org/web/packages/randtoolbox/vignettes/fullpres.pdf
https://cran.r-project.org/web/packages/randtoolbox/vignettes/fullpres.pdf
http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/


Digital Technologies Research and Applications | Volume 04 | Issue 03

8. Matsumoto, M.; Nishimura, T. Mersenne twister: A 623‑dimensionally equidistributed uniform pseudoran‑
dom number generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30.

9. Panneton, F.; L’Ecuyer, P.; Matsumoto, M. Improved long‑period generators based on linear recurrences mod‑
ulo 2. ACM Trans. Math. Softw. 2006, 32, 1–16.

10. Park, S.K.; Miller, K.W. Random number generators: good ones are hard to find. Commun. ACM 1988, 31,
1192–1201.

11. Weyl, H. Uǆ ber die Gleichverteilung von Zahlen mod Eins.Math. Ann. 1916, 77, 313–352.
12. Chakraborty, S.; Haldar, S.Randomness RevisitedUsing the VProgrammingLanguage; Nova SciencePublishers

Inc.: New York, NY, USA, 2023.
13. Ferguson, N.; Schneier, B. Practical Cryptography; Wiley Publishing: Indianapolis, IN, USA, 2003.
14. Berezowski, M. Chaotic distribution of prime numbers and digits of π. SSRN Electron. J. 2019. [CrossRef]
15. Tezuka, S. Linear Congruential Generators. In Uniform Random Numbers; Springer: Boston, MA, USA, 1995;

pp. 47–67. [CrossRef]
16. Marsaglia, G. Xorshift RNGs. J. Stat. Softw. 2003, 8, 14. [CrossRef]
17. Ross, S.M. Nonparametric Hypotheses Tests. In Introductory Statistics, 3rd ed.; Academic Press: Boston, MA,

USA, 2010.
18. Martin‑Löf, P. The definition of random sequences. Inf. Control 1966, 9, 602–619. [CrossRef]
19. Karatsuba, A.; Ofman, Y. Multiplication of many‑digital numbers by automatic computers. Dokl. Akad. Nauk

B.S., Ed.; Springer: Berlin, Heidelberg, Germany, 1997; pp. 46–74. [CrossRef]
21. DeGroot, M.H.; Schervish, M.J. Probability and Statistics, 4th ed.; Pearson: London, UK, 2011.
22. Rosen, K. Irrationality and Transcendence; Dover Publications: Mineola, NY, USA, 2014.
23. Volchan, S.B. What is a random sequence? Am. Math. Mon. 2002, 109, 46–63.
24. Tipler, P.A.; Llewellyn, R.A. Radioactive Decay and the Exponential Function

SSSR 1962, 145, 293–294. [CrossRef] (in Russian)
20. Goldreich, O. On the foundations of modern cryptography. In Advances in Cryptology—CRYPTO’97; Kaliski,

; W. H. Freeman and Company:
New York, NY, USA, 2003.

25. O’Neill, M.E. PCG: A family of simple fast space‑efficient statistically good algorithms for random number
generation; Harvey Mudd College: Claremont, CA, USA, 2014.

26. Lehmer, D.H. Mathematical methods in large‑scale computing units. Annu. Comput. Lab. Harvard Univ. 1951,
26, 141–146.

27. Kneusel, R.T.RandomNumbers and Computers, 1st ed.; Springer International Publishing: Cham, Switzerland,
2018.

28. Nedvedova, M.; Marek, J. Pioneering works in the application of random numbers to digital art and linear
programs of Zdeněk Sýkora. In Proceedings of the 32nd Spring Conference on Computer Graphics, Smolenice,
Slovakia, 27–29 April 2016.

29. Gentle, J.E. Computational Statistics; Springer: New York, NY, USA, 2009.
30. Chakraborty, S. On why and what of randomness. DataCritica Int. J. Crit. Stat. 2010, 3, 1–13.

Copyright© 2025 by the author(s). Published by UK Scientific Publishing Limited. This is an open access article
under the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Publisher’s Note: The views, opinions, and information presented in all publications are the sole responsibility of the respective
authors and contributors, and do not necessarily reflect the views of UK Scientific Publishing Limited and/or its editors. UK
Scientific Publishing Limited and/or its editors hereby disclaim any liability for any harm or damage to individuals or property
arising from the implementation of ideas, methods, instructions, or products mentioned in the content.

77

https://doi.org/10.2139/ssrn.3562793
https://doi.org/10.1007/978-1-4615-2317-8_3
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.1016/S0019-9958(66)80018-9
http://mi.mathnet.ru/dan26729
https://doi.org/10.1007/BFb0052227

	Introduction
	Background
	Pseudo-Random Number Generators and Seeds
	Randomness Criteria
	Irrational Numbers and Infinite Expansions
	Normal Numbers
	Equidistribution and Weyl's Theorem

	Literature Review
	Applications and Case Studies
	Monte Carlo Simulations
	Computer Gaming and Entertainment
	Machine Learning and Optimization
	Cryptographic Awareness (Cautionary Case)
	Educational Demonstrations

	Methodology 
	Results
	Conclusions

