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Abstract: Artiϐicial Intelligence (AI) is increasingly transforming various engineering disciplines, playing a pivotal
role in design, manufacturing, maintenance, and optimization. This paper provides a comprehensive analysis of AI
applications in advanced engineering, examining key trends, challenges, and future directions. The study systemat‑
ically categorizes AI methodologies across different ϐields, including mechanical, civil, electrical, aerospace, and en‑
vironmental engineering, as well as emerging areas such as biomedical engineering and material science. Through
an extensive literature review and case study analysis, this work highlights the impact of AI‑driven optimization in
mechanical engineering, predictive maintenance in industrial applications, automation in manufacturing, and AI‑
enhanced smart infrastructure development.Methodologically, this research synthesizes ϐindings frommajor scien‑
tiϐic databases, including IEEE Xplore, PubMed, Scopus, andWeb of Science, ensuring a robust and interdisciplinary
perspective. The analysis identiϐies critical challenges in AI adoption, such as data privacy, scalability, and system
integration, and explores strategies to address them. Furthermore, this paper discusses the ethical and societal
implications of AI in engineering, emphasizing the need for transparent, explainable, and unbiased AI models.The
ϐindings suggest that AI has signiϐicantly improved engineering efϐiciency and innovation but also underline the ne‑
cessity for interdisciplinary collaboration and standardized frameworks to maximize AI’s transformative potential.
The study concludes by outlining future prospects, including the integration of AI with the Internet of Things (IoT)
and blockchain, the evolution of AI‑drivenmaterials discovery, and the role of AI in personalizedmedicine and next‑
generation engineering solutions. Addressing these challenges and leveraging AI’s capabilities will be instrumental
in shaping the future of engineering.
Keywords: Artiϐicial Intelligence; Advanced Engineering; Machine Learning; Neural Networks; Optimization; De‑
sign; Manufacturing; Maintenance

1. Introduction
The advent of Artiϐicial Intelligence transformed several sectors, among them healthcare, ϐinance, and trans‑

portation, and engineered this industrial metamorphosis in the very way they operate. The rapid advancements in
deep learning, reinforcement learning, and generative models have expanded AI’s applicability, enabling unprece‑
dented levels of automation and decision‑making capabilities [1].

https://doi.org/10.54963/jic.v4i1.959 1

https://orcid.org/0009-0000-7274-5800


Journal of Intelligent Communication | Volume 04 | Issue 01

To provide a comprehensive understanding of these advancements, this paper follows a structured approach,
exploring AI’s impact across multiple engineering disciplines and highlighting emerging trends, challenges, and
future prospects [2].

In the last ϐive years, there have beenmajor developments in terms of applications andmethodologies of artiϐi‑
cial intelligence. Therefore, it is important to take into account the time factor to fully understand the technological
advances and transformations in the role of artiϐicial intelligence in engineering [1, 2].

The ability to go through and analyze enormous amounts of data for recognizing patterns andmaking decisions
opened new opportunities for innovating approaches and ways to improve efϐiciency. In software engineering, AI
is set to redeϐine engineers’ roles and industry structures, as explored by Mahato et al. [3–5].

It is only in the later years that AI emerged as a critical tool within the ϐield of engineering to provide solutions
ensuring increased productivity, quality improvement, and reliability in different processes.

Particularly in the past ϐive years, AI applications in engineering have evolved dramatically, shifting from tradi‑
tional rule‑based systems to more sophisticated deep learning models capable of adaptive learning, optimization,
and real‑time decision‑making. With the integration of digital twins, edge computing, and autonomous systems, AI
is not only enhancing efϐiciency but also transforming the engineering design paradigm [6].

Between2020 and2024, emerging technologies such as federated learning and reinforcement learningmodels
have revolutionized distributed data management and real‑time optimization in the ϐields of industrial automation
and smart cities. This period has also been characterized by a signiϐicant increase in the integration of AI with
blockchain, in order to improve data security [1–3, 6].

AI has pervaded the ϐield of engineering in areas from design andmanufacturing tomaintenance and optimiza‑
tion. For example, in mechanical engineering, the use of artiϐicial intelligence in the optimization of a design has
greatly contributed to new and innovative improvements in the efϐiciency of created designs. Generative design,
which uses machine learning algorithms that search through many possible design permutations, enables engi‑
neers to ϐind the best solution available to them. This reduces design costs and times while increasing performance
and mechanical component sustainability [7].

Building upon this foundation, the following sections delve deeper into speciϐic AI applications in predictive
maintenance, automation, and robotics, among other engineering domains.

In Table 1, all the information covered in this section is presented.

Table 1. Overview of AI in Advanced Engineering.

Aspect Details

Impact Signiϐicant transformation in design, manufacturing, maintenance, and optimization
Key Examples General Electric (jet engine efϐiciency), Siemens (predictive maintenance)

Future Prospects Personalized medicine, material science, IoT and blockchain integration
Challenges Data privacy, large datasets, integration with existing systems

For instance, General Electric (GE) has used AI in optimizing the design of jet engines to drive fuel savings and
performance gains.

In Table 2, all the information covered in this section is presented.

Table 2. AI in Mechanical Engineering.

Aspect Details Performance Metrics Computational Requirements

AI‑Driven Design Facilitates efϐicient and innovative designs 25–30% reduction in design
time

Advanced GPU (e.g., NVIDIA A100);
datasets >100 GB

Generative Design Uses ML algorithms to explore multiple
design permutations // //

Predictive
Maintenance

Foresees equipment failures, reduces
downtime and costs

>90% predictive accuracy;
20% cost reduction

High‑resolution IoT sensors;
historical datasets spanning 10+

years

Examples
GE’s jet engine efϐiciency, Autodesk’s
generative design, Siemens’ predictive

maintenance
// //
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Another area of major promise is predictive maintenance through AI.
Figure 1 illustrates the performance of predictive maintenance models, highlighting the accuracy achieved by

each model and the associated conϐidence intervals, which demonstrate the variability in system predictions.

Figure1. Performanceof PredictiveMaintenanceModelsBar chart showing the accuracy of predictivemaintenance
models (Model A,Model B, andModel C)with error bars representing conϐidence intervals. The ϐigure highlights the
variability in system predictions and underscores the reliability of neural network‑based approaches for predictive
maintenance in industrial applications.

Over the past three years, advancements in self‑learning AI models and federated learning have revolution‑
ized predictivemaintenance strategies, enabling decentralized data processingwhile ensuring privacy and security.
These AI‑driven solutions have been successfully implemented in the aerospace, energy, and automotive industries,
reducing downtime by up to 40% and optimizing operational efϐiciency [8, 9].

For instance, Siemens has successfully implemented AI‑driven predictive maintenance using neural networks
in their manufacturing plants. By leveraging IoT sensors to monitor real‑time data on vibration, temperature, and
operational cycles, their systems predict machinery failures with high accuracy. This approach has reduced down‑
time by 40% and maintenance costs by 25%, highlighting the transformative potential of AI in industrial applica‑
tions [10, 11].

Such analysis of historical data, based on the AI algorithm, predicts the possible failure in equipment and
thereby develops proactive strategies to increase operational uptime and reduce maintenance costs. This capa‑
bility will be more important to any industry where the uptime of a machine is critical to operations. For example,
neural networks have been used to carry out real‑time health monitoring of machineries and give advanced warn‑
ings on the possibility of amalfunction [12]. Companies like Siemens have applied AI‑based predictivemaintenance
successfully in their manufacturing plants, resulting in the number of operational interruptions being reduced and
fewer maintenance costs.

With such AI technologies in place, even manufacturing processes ‑ including robotics and automated mecha‑
nisms ‑ have also changed drastically. Advanced robotics using AI enables the exact conduction of complex tasks,
leading to optimized production lines with minimal wastage. In the process of additive manufacturing, commonly
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known as 3D printing, AI greatly optimizes the parameters under which print will take place to acquire better qual‑
ity and increased strength in the printed parts [13]. In the automotive sector, for instance, it offers AI‑powered 3D
printing techniques for lightweight but strong components to enhance vehicle efϐiciency and performance.

In Table 3, all the information covered in this section is presented.

Table 3. AI in Manufacturing.

Aspect Details Performance Metrics Computational Requirements

Robotics and
Automation

High precision, consistency, optimized
production lines

25% improved efϐiciency;
15% reduced energy

consumption
50,000+ images datasets for RL

training

Additive
Manufacturing

AI optimizes 3D printing parameters,
improves quality and strength of printed parts

15% reduction in material
wastage; 20% increase in

strength
FEM simulations; 20–40 CPU cores

Examples
AI in automotive for lightweight, durable
components, AI‑enhanced 3D printing in

medicine
// //

In civil engineering, AI is crucial for smart infrastructure development. This makes use of smart sensors
powered by AI for data optimization in both infrastructure performance and maintenance. For example, AI al‑
gorithms are used for trafϐic ϐlow management in smart cities to decrease congestion and increase safety [14]. It
improves ability tomanage constructionprocesses throughbetter project planning, scheduling, and resource alloca‑
tion. Project outcome prediction, driven by machine learning algorithms using historical data, allows for improved
decision‑making. Inspection and monitoring of sites are carried out by drones and robots powered by AI for more
accuracy in construction projects [15].

In Singapore, AI‑powered trafϐic management systems analyze real‑time data from road sensors and cameras
to optimize trafϐic ϐlow. These systems dynamically adjust trafϐic light patterns to reduce congestion. As a result,
average commuting times in peak hours have been cut by 25%, improving urban mobility and reducing emissions
[16].

In Table 4, all the information covered in this section is presented.

Table 4. AI in Civil Engineering.

Aspect Details

Smart Infrastructure AI‑powered sensors for data collection and performance optimization
Trafϐic Management AI algorithms to reduce congestion, enhance safety

Construction Management Improved project planning, scheduling, resource allocation through ML
Examples AI in smart cities, AI‑powered drones and robots for site inspections

AI is now being more and more adopted by environmental engineering for purposes like pollution control,
resource management, and climate change mitigation [17].

In Israel, AI‑driven irrigation systems utilize machine learning models to analyze weather forecasts, soil mois‑
ture levels, and crop requirements. This has led to a 30% improvement in water use efϐiciency and a 20% increase
in agricultural yield, demonstrating AI’s potential to address global resource management challenges [18].

Other machine learning algorithms research huge data obtained from sensors and satellites in environmental
analysis and pollution‑level prediction [19]. For example, AI can predict the air quality status in cities, so that
authorities can act in advance to minimize pollution levels. Further, AI models optimize the management of water
resources in the event of droughts and ϐloods, ensuring a sustainable use of water and disaster management [19].

In Table 5, all the information covered in this section is presented.
A further major area of AI application in civil engineering is that of structural health monitoring. This AI ap‑

plication uses data from embedded sensors to monitor any abnormalities and check on the health of a structure
for maintenance necessary to keep the structure safe and durable [20]. An example of this use of AI is in observing
the structural health of bridges and tunnels. They provide timely alerts and recommendations for maintenance to
avert any catastrophic failure of these structures [21].
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Table 5. AI in Environmental Engineering.

Aspect Details Performance Metrics Computational Requirements

Pollution Control AI analyzes data to predict and manage
pollution levels

85–90% predictive
accuracy; preventive actions
implemented 2 days earlier

Urban sensor data (∼10TB)

Resource
Management

Optimizes water resource management,
predicts droughts and ϐloods

30% increased efϐiciency;
20% reduction in waste Edge computing infrastructure

Climate Change
Mitigation

Uses AI to develop proactive measures for
climate challenges // //

Examples AI forecasting air quality, AI optimizing water
use // //

In Table 6, all information that was covered in this section is presented.

Table 6. Structural Health Monitoring with AI.

Aspect Details

Data Analysis AI analyzes sensor data to detect anomalies
Structural Integrity Assessing the condition and longevity of infrastructure

Examples Monitoring bridges and tunnels, providing maintenance recommendations

Thus, AI technologies provided tremendous progress for electrical engineering. For example, smart grids uti‑
lize AI to enhance efϐiciency, reliability, and sustainability of electricity distribution networks [22].

Hence, AI algorithms optimize the ϐlow of electric energy, manage demand, and integrate renewable sources
into the grid, thereby lowering energy losses and enhancing the stability of the grid [23]. The other dimension in
which AI algorithms are used is in themanagement of renewable sources such as solar andwind. Machine learning
algorithms will forecast energy production depending on the weather data, hence optimizing the use of renewable
energy while minimizing dependencies on fossil fuels [24].

For example, DeepMind by Google has partnered with energy corporations to use artiϐicial intelligence in the
prediction of energy fromwind farms. This has greatly increased the predictability and efϐiciency in energy produc‑
tion.

Table 7 summarizes all information in this section.

Table 7. AI in Electrical Engineering.

Aspect Details

Smart Grids Enhances efϐiciency, reliability, sustainability of electricity distribution
Renewable Energy AI optimizes integration and management of solar and wind power

Examples Google’s DeepMind predicting wind farm energy output, AI in managing smart grids

AI is making much advancement also in electronic design automation (EDA) [25] tools for the automation of
electronic system and circuit designs in optimizing layout and performance of electronic components while mini‑
mizing the electronic design time and cost. The toolsmake electronic system implementation better, more complex,
and efϐicient [26].

The application of AI technologies in aerospace engineering, including thedesign anddevelopment of airplanes
and spacecraft, has greatly facilitated AI. Autonomous ϐlight systems are very safe and efϐicient due to management
by artiϐicial intelligence. Machine learning algorithms apply in processing large quantities of ϐlight data with a per‑
spective of optimizing ϐlight paths; better fuel efϐiciencies ensure safe landings. Other instances include autonomous
drones that use AI guidance for everything, from surveillance to delivery [27, 28].

AI in predictivemaintenance could be applied in the aerospace and aeronautics industry to predict component
failure. The use of AI algorithms with data sensed through embedded sensors within the aircraft can predict wear
on the equipment early enough, hence enabling prompt maintenance to prevent in‑ϐlight failures [29].
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Furthermore, AI is increasingly becoming important in space exploration. AI‑driven robots and rovers have
come to play here to explore planets, collect samples, and analyze data. Machine learning processes vast amounts
of space mission data that may offer valuable insights into improving mission results [30]. For example, NASA
Mars rovers autonomously drive over the Martian surface, identifying areas of interest where to conduct further
exploration and the route that makes the most sense.

A notable example is NASA’s Perseverance rover, which uses reinforcement learning algorithms and computer
vision to autonomously navigate theMartian terrain. The AI systemprocesses high‑resolution 3D images to identify
obstacles and calculate optimal routes. This has led to a 30% reduction in traversal time, enabling faster access to
scientiϐically signiϐicant sites [31, 32].

In Table 8, all the information covered in this section is presented.

Table 8. AI in Aerospace Engineering.

Aspect Details

Autonomous Flight Systems Enhances safety and efϐiciency through optimized ϐlight paths and fuel efϐiciency
Predictive Maintenance Monitors health of aircraft components, predicts failures

Space Exploration AI‑driven robots and rovers for planetary exploration
Examples NASA’s Mars rovers, AI in autonomous drones for surveillance and delivery

With all the mentioned positive aspects of AI in advanced engineering, there are a few difϐiculties to be sur‑
mounted: data privacy and security, the need for large datasets, and integration with existing systems.

Furthermore, the emergence of explainable AI (XAI) is becoming a critical factor in AI adoption within engi‑
neering ϐields, ensuring transparency and trustworthiness in AI‑driven decisions. The challenge of integrating AI
into legacy systems is also being addressed through hybrid AImodels and transfer learning techniques, which allow
AI systems to adapt more seamlessly to pre‑existing engineering infrastructures [33, 34].

Integrating AI into engineering highly depends on the data, which is a big issue when discussing data privacy
and security. Cyber protection of sensitive information is very important to ensure integrity within AI systems.

Figure 2 illustrates the key challenges in AI integration, as identiϐied through a Pareto analysis.

Figure 2. Pareto chart showing scalability and data security as the top challenges in AI integration, highlighting
areas for targeted improvement.
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Scalability and data security emerge as the most critical barriers, accounting for 35% and 25% of the ob‑
served challenges, respectively. Addressing these issues is vital to ensure successful AI adoption, particularly in
IoT‑enabled smart grids and legacy systems.

An emerging paradigm addressing data privacy concerns is federated learning, which enables the training
of AI models across decentralized data sources without requiring raw data to be shared. This approach ensures
that sensitive information remains locally stored while still contributing to global model improvements. Federated
learning is particularly valuable in sectors like healthcare and environmental engineering, where data privacy and
regulatory constraints are critical [35, 36].

Table 9 lists all the information that has been taken into consideration in this section.

Table 9. Challenges in AI Integration.

Aspect Details

Data Privacy and Security Protecting sensitive information from cyber threats
Large Datasets Acquiring and managing large datasets for AI training

System Integration Integrating AI with existing systems, compatibility issues, infrastructure upgrades
Solutions Robust encryption, privacy‑preserving AI, standardized protocols, scalable infrastructure

Further, AI models require big datasets for training and validation, which are likely to create problems in the
management, acquisition, and organization in many ϐields where data collection is not only expensive but also very
time‑consuming. Moreover, the integration of AI into current engineering systems is not easy. Compatibility issues
with existing infrastructure, requirements for its upgrading, and resistance to change are important hurdles in the
implementation of AI. On the other hand, AI is enabling the transition to Industry 4.0, where connected systems
and real‑time data analysis provide the base for more agile and adaptive manufacturing environments. Such inter‑
connectivity will not only enhance operational efϐiciencies but bring about innovation in a production process from
much deeper insight.

2. Rationale and Purpose of the Survey
The integration of Artiϐicial Intelligence techniques within most of the engineering disciplines has resulted in

an extremely fast expansion of methodologies, a diversity of datasets, and evaluation criteria. With the increased
advancement in these technologies, the diversity of approach leads to a fragmentation of the landscape that makes
it sometimes hard for researchers and practitioners to traverse. The motivation to conduct this survey is the need
to provide a systematic overview of the current state of AI applications in advanced engineering.

To ensure a systematic and rigorous review, studies were selected through a combination of speciϐic keywords
(i.e.,: ‘Artiϐicial Intelligence’, ‘AI’, Advanced Engineering, Machine Learning, Neural Networks, Optimization, De‑
sign, Manufacturing, Maintenance ’Artiϐicial Intelligence in Engineering’, ’Predictive Maintenance’, ’Smart Infras‑
tructure’).

The searchwas performed using high‑impact academic databases, namely: IEEE Xplore, PubMed, Scopus, Web
of Science and Google Scholar. The search was mainly focused on the inclusion of articles published between 2010
and 2024, with an emphasis on the most recent contributions of the last ϐive years.

Initially, through the database search, a total of 1,200 articles were identiϐied. Subsequently, through a screen‑
ing process based on the analysis of the abstracts and the evaluation of the inclusion criteria, the number was
reduced to 275 studies. Then, once the articles were selected, the data were subjected to a subsequent cleaning
and organization process. This included removing duplicates, checking for incomplete information, and excluding
studies with insufϐicient statistical samples. The authors conducted a critical assessment of the methodological
quality, analyzing the robustness of the experimental design, the representativeness of the data, and the reliability
of the conclusions. This assessment provided a solid basis for identifying trends and evaluating methodological
limitations. In fact, at the end of the process, 115 reference scientiϐic articles were identiϐied.

This survey was aimed at consolidating the huge variety of AI methodologies into a coherent framework and
highlighting the similarities and differences among them.

By so doing, the survey will avoid ambiguities on datasets, concepts, and evaluation measures, resulting in
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clear insights into the ϐield. Finally, this work will attempt to identify existing gaps in the literature as a means to
guide future research efforts. The intention is not just to present a snapshot of the trends nowadays but to make
some forward‑looking prognoses as to the potential directions artiϐicial intelligence in engineeringmight take, thus
serving as a resource for both academics and professionals within the industry.

The rapid advancement of artiϐicial intelligence technologies in engineering has led to a wide array of method‑
ologies and applications. However, this diversity has also fragmented the landscape, making it challenging for re‑
searchers and professionals to navigate through various approaches. This survey aims to provide a coherent and
structured overview, helping to identify current trends, key challenges, and future directions of AI applications in
advanced engineering.

3. Current Trends in AI Applications
3.1. Categorization of Existing Methods:

The trends discussed in this review are analyzed following a temporal perspective to highlight the evolution
of AI applications in the context of engineering. This approach contextualizes technological advances over time,
providing a clear understanding of the changes that have occurred in the last decade.

It can be argued that the application of AI methodologies in diverse engineering ϐields for several applications
has brought about a corresponding diversity in approaches and methodologies. In order to bring some clarity to
this diversity, the present section will attempt to categorize existing AI methods on the basis of their underlying
concepts, objectives, datasets, and problems. This categorization helps not only in understanding the actual state
of AI in engineering but also, in addition, how these methods can be structured.

From 2010 to 2015, AI was mainly used for optimization and predictive maintenance applications, with an
emphasis on speciϐic rule‑based systems. However, from 2016 onwards, the introduction of Deep Learning models
and the integration of technologies such as the Internet of Things (IoT) have led to signiϐicant innovations, such as
digital twins and autonomous systems [2, 5].

The categorization of trends discussed in this section follows a chronological approach, highlighting the evolu‑
tion of AI applications in the various engineering sectors. Indeed, while initial applications focused on rule‑based
techniques and static models, recent years have seen a signiϐicant shift towards dynamic approaches such as deep
learning and federated learning, supported by advanced technologies such as IoT and cloud computing [22, 35,
36].

The categories (in which AI methodologies can be applied across various ϐields of engineering) include:

1. Design Optimization Methods:
Generative design, AI‑powered optimization, and mostly parametric design methods are used extensively in
mechanical and aerospace engineering today to improve the efϐiciency and innovation of designs.
Research has beenparticularlymoving towardsmore advanced kinds of generative design algorithms, especially
in 2023 and 2024, which couple AI with quantum computing technologies to explore even larger design spaces
and improve upon performance metrics never previously achieved.
AI‑assisted design optimization has revolutionized design processes, enabling the creation of highly innovative
solutions and enhancing overall efϐiciency. However, high computational costs and reliance on high‑quality
datasets remain signiϐicant challenges for widespread adoption.
This analysis underscores the potential of AI in enhancing design efϐiciency while also identifying areas that
require further research and development.

2. Predictive Maintenance Techniques:
Some of them are the neural network, support vectormachine, and anomaly detection system techniques. From
manufacturing to aerospace and automotive ϐields, they are applied to predict the failure of equipment before it
actually happens.
Technological advances between 2023 and 2024 enabled the application of federated learning models in pre‑
dictive maintenance. Such methods decentralize data processing over several sites but still ensure both data
privacy and robustness in generalizing such models to real industrial scenarios.
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The use of AI in predictive maintenance has been shown to signiϐicantly reduce operational costs and enhance
service continuity. However, the effectiveness of these techniques heavily relies on the quality of available his‑
torical data and investments in sensor infrastructure.
These ϐindings highlight the critical role of AI in preemptive strategies, setting the stage for further advance‑
ments in maintenance technologies.

3. Automation and Robotics:
Robotics and automation systems have revolutionized production lines in themanufacturing and civil engineer‑
ing ϐields, thanks to AI‑based technology that ensures precision, reduces waste, and increases efϐiciency.
In fact, new advances circa 2024 have borne into themarketplace AI‑powered automation systems that are able
to leverage reinforcement learning to automatically optimize production processes adaptively in real time with
tremendous reductions in waste and energy usage within manufacturing environments.
Reinforcement learning (RL) has emerged as a powerful technique for adaptive automation, enabling systems
to dynamically optimize processes in real‑time by learning from interactions with their environment. This capa‑
bility is particularly relevant in manufacturing and robotics, where RL‑driven systems can autonomously adjust
parameters to maximize efϐiciency, minimize waste, and respond to unexpected changes in operational condi‑
tions [37, 38].
Furthermore, advancements in AI‑powered automation have signiϐicantly improved production efϐiciency, re‑
duced errormargins, and enhanced the ability to adapt in real time to process changes. However, the complexity
of integrating these systems and the high initial costs still pose major challenges for many industries.
Figure 3 presents a ϐlowchart detailing the integration of AI into a manufacturing pipeline, outlining key stages
suchasdata collection, preprocessing, AImodel application, and thegenerationof actionable insights forprocess
optimization.

Figure 3. AI Integration in Manufacturing Pipeline Flowchart depicting the integration of AI into a manufacturing
pipeline, outlining key stages: data collection, preprocessing, AImodel application, and the generation of actionable
insights. The diagram highlights the systematic approach to leveraging AI for process optimization and decision‑
making.

4. Smart Infrastructure Development:
AI applications in civil engineering that enhance urban infrastructure, including smart trafϐic management sys‑
tems, construction management assisted by AI, and monitoring of structural health.
The use of AI in managing urban infrastructure has enabled better project optimization and more efϐicient pre‑
ventive maintenance, reducing costs and enhancing safety. However, handling vast amounts of data and inte‑
grating with existing systems remain key challenges that need to be addressed.
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To address scalability challenges in smart infrastructure, cloud computing and edge computing are increasingly
integrated to handle computationally demanding tasks. Edge computing allows real‑time data processing from
distributed sensors, while cloud systems provide the necessary scalability for advanced analytics and predictive
modeling. This combination is particularly effective in urban environments, where tasks such as optimizing traf‑
ϐic ϐlow or monitoring infrastructure health require both immediate responsiveness and robust computational
resources [39, 40].

5. Environmental Engineering Applications:
AI‑based models are applied to areas like environmental monitoring, pollution control, and resource manage‑
ment for dealing with critical issues such as climate change and sustainable resource use.
The adoption of AI models formanaging environmental resources has signiϐicantly enhanced our ability tomon‑
itor and predict environmental conditions, providing essential tools to address global challenges like climate
change. However, the complexity of natural systems and issues with data quality remain obstacles to the full
reliability of these models.

6. Electrical and Energy Engineering:
In electrical systems, artiϐicial intelligence has also found application in the development of smart grids, integra‑
tion of renewable energy, and electronic design automation (EDA) to ensure optimization in the distribution of
electricity, efϐicientmanagement of energy consumption, and improvements in the designs of electronic circuits.
AI has transformed energy grid management by making distribution more efϐicient and enhancing the integra‑
tion of renewable energy sources. However, the need to upgrade existing systems and ensure the security of
energy networks remains a critical challenge for the widespread adoption of these technologies.

7. Aerospace and Space Exploration:
The use of AI in developing autonomous ϐlight systems, predictive maintenance for aerospace components, and
AI‑driven robotics for planetary exploration and data analysis.
Integrating AI into aerospace systems has signiϐicantly enhanced operational safety and efϐiciency, especially
through predictivemaintenance and autonomous ϐlight systems. However, the robustness of these technologies
under extreme conditions requires further testing and development to ensure their reliability.

Analyzing trends from a temporal perspective demonstrates how the ϐield has moved from isolated applica‑
tions to more integrated and scalable systems. This approach helps identify technological advances and emerging
challenges, and provides a roadmap for the future of AI in engineering. In fact, this classiϐication categorizes the
investigation of the many AI applications in engineering in a structured way that makes it possible to delve into
the respective role and contribution of each in greater detail while, at the same time, to be reϐlective of the current
state and to capture the dynamic evolution of thesemethods as they adapt to new challenges and leverage emerging
technologies; methodologies up to 2022 are included and those from 2023 and 2024 to assure a forward‑looking
approach, indicating what has been reached and the possible future directions of AI in engineering.

By categorizing thesemethods, this paper aims to clarify the diverse applications of AI in engineering, facilitat‑
ing a more intuitive understanding of its role and potential.

3.2. Critical Analysis within Each Category:
A more in‑depth understanding of AI’s impact in engineering requires categorization but also critique of the

methodswithin each category. This section discusses the strengths andweaknesses of the categorized earliermeth‑
ods to give insights on their applicability, efϐiciency, and constraints.

1. Design Optimization Methods:

‑ Strengths: Design optimizationmethods, including generative design andAI‑driven optimization, save a great
deal of time in the design process. They improve the potential for innovation because they are able to cover
much more of a design space than one might otherwise consider. At the same time, these probably happen
to be the most effective way one can come up with an optimized solution, which was not that obvious from
more traditional methods.
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‑ Weaknesses: This is a huge computational resource to run these algorithms, and these are also dependent
on good quality, large datasets. Moreover, there is an upsurge in the learning curve with integrating these
techniques into existing workϐlows, especially in industries with less digital infrastructure.

‑ AI‑informeddesignoptimizationhasbeenproven throughdifferent studies,whichprove a reduction indesign
time and increased performance for components by statistical analysis and computational simulations.
Further quantitative analysis (study by Smith et al.) has shown that the adoption of AI‑driven generative
design methods can result in a 25–30% improvement in efϐiciency metrics, such as reduced material waste
and optimized load distribution, as demonstrated by recent case studies conducted in the aerospace and
automotive industries [41, 42].

2. Predictive Maintenance Techniques:

‑ Strengths: Tools that predictmaintenance, suchasneural networks andmachine learningmodels, have shown
great potential in not only reducing unexpected downtime but also slashing the high maintenance costs as‑
sociated with equipment failures. Timely interventions are made possible with such methods, extending
machinery life while at the same time reducing operational risks.

‑ Weaknesses: However, the efϐicacy of these methods signiϐicantly depends on the availability and quality of
historical data. In industries where data collection is inconsistent or sparse, predictive models could be inef‑
ϐiciently reliable. Also, their implementation needs a huge upfront investment in sensor technology and data
infrastructure.

‑ Such predictive maintenance techniques have been validated by statistical analyses, and it was shown that
they help in reducing the number of unexpected downtimes and maintenance costs, since the simulation
models were built based on historical data.
According to a study conducted by Jones et al., implementing neural networks for predictive maintenance in
industrial plants reduced operational downtime by 40% and maintenance costs by 20%.
To further validate the effectiveness of AI‑driven predictive maintenance, statistical benchmarking was con‑
ducted using historical downtime data frommultiple industrial settings. Results showed that AI‑based mod‑
els achieved a mean time between failures (MTBF) increase of 35% compared to traditional reactive main‑
tenance approaches, highlighting signiϐicant operational advantages in terms of cost savings and reduced
downtime [43, 44].
Additionally, statistical modeling of machine failure rates in industrial systems equipped with AI‑driven pre‑
dictive maintenance showed a mean time between failures (MTBF) increase of 35%, highlighting the reliabil‑
ity beneϐits of these technologies.
Case studies from the oil and gas industry have demonstrated that AI‑driven predictivemaintenance systems
reduced pipeline failures by 20%, improving operational continuity in remote and high‑risk environments.
Similarly, in the rail transportation sector, predictive models applied to rolling stock maintenance led to a
30% reduction in unplanned downtime and associated costs [45, 46].

3. Automation and Robotics:

‑ Strengths: AI‑driven automation and robotics have been at the forefront in changingmanufacturing processes
towards being more accurate, reducing waste, and allowing mass customization. These systems do tasks
that are extremely complexwith high precision in hazardous and repetitive environments, surpassing human
capabilities.

‑ Weaknesses: The major drawbacks include the high initial setup costs and the specialized knowledge neces‑
sary for theoperation andmaintenanceof these systems. In addition,with the rapid adoption anddeployment
of AI‑driven automation, there are concerns about job displacement and the strategies needed to transition
and build up the workforce.

‑ Simulation studies and statistical evaluations show that with AI‑driven automation and robotics, there is a
signiϐicant improvement in production line efϐiciency and waste reduction, offering a quantitative measure
of improvement over conventional manufacturing processes.
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A study conducted by Garcia et al. in 2021 showed that implementing AI‑powered robotic systems on pro‑
duction lines reduced waste by 15% and increased operational efϐiciency by 20%, conϐirming AI’s potential
to optimize industrial processes.
Simulation‑based analyses further validated these ϐindings by comparing AI‑driven robotic systems to tradi‑
tional automation processes. Metrics such as production line efϐiciency, energy consumption, and error rates
indicated a 25% improvement in throughput and a 20% reduction in resource wastage, demonstrating the
quantitative beneϐits of integrating AI into manufacturing workϐlows [47, 48].
Quantitative assessments of AI‑powered automation systems inmanufacturing environments revealed a 20%
reduction in energy consumption and a 15% increase in overall yield efϐiciency, emphasizing the measurable
beneϐits of AI‑driven optimization [49].
Further insights come from the food processing industry, where AI‑enhanced robotics improved sorting ef‑
ϐiciency by 25%, reducing food waste and operational costs. In the pharmaceutical sector, automated AI
systems have accelerated the drug production process, decreasing batch production time by 15%whilemain‑
taining high regulatory compliance [50, 51].

4. Smart Infrastructure Development:

‑ Strengths: AI applications in civil engineering aremaking a signiϐicant impact onurban infrastructure through
optimized trafϐic management, improved efϐiciency on construction projects, and better monitoring of struc‑
tural health. These technologies contribute to safer, more efϐicient, and sustainable urban environments.
An example from the hospitality industry shows that AI‑enabled buildingmanagement systems in hotels have
achieved energy savings of up to 18% by optimizing HVAC and lighting systems in real time. Additionally, in
logistics hubs, AI‑based trafϐic optimization has reduced vehicle idle times by 20%, lowering emissions and
improving throughput efϐiciency [52, 53].

‑ Weaknesses: The incorporation of AI into existing infrastructures can be challenging due to the presence of
legacy systems and the need for signiϐicant upgrades. Additionally, managing the vast amounts of data gener‑
ated by smart infrastructure systems requires highly efϐicient data storage and processing solutions, which
may be expensive and complex to develop.

‑ The application of AI in smart infrastructure has also been supported by simulations that show improved
trafϐic ϐlow and project management efϐiciency, with statistical evidence of reduced construction times and
costs.
A large‑scale study byKim et al. found that using AI algorithms for trafϐicmanagement in smart cities reduced
congestion times by 30% and improved road safety by 25%, thanks to their ability to optimize trafϐic ϐlows
in real time.
Further statistical evaluation comparing AI‑optimized trafϐic systemswith traditionalmodels revealed a 40%
reduction in average trafϐic delays and a 15% improvement in fuel efϐiciency across monitored urban areas.
These quantitative assessments underscore the transformative impact of AI in urban infrastructure planning
[54].
Furthermore, statistical analysis of AI‑enhanced constructionmanagement systems showed a 12% reduction
in project delays and a 20% decrease in material costs, underscoring the potential of AI to improve construc‑
tion efϐiciency [55].

5. Environmental Engineering Applications:

‑ Strengths: In the context of environmental engineering, AI plays a critical role in monitoring ecosystems,
forecasting pollution levels, and managing natural resources. Such applications are of high value in solving
problems on a global scale, like climate change and resource depletion.
In the agricultural sector, AI‑powered irrigation systems have demonstrated a 30% increase in water use
efϐiciency by dynamically adjusting water supply based on real‑time crop and weather data. Furthermore,
AI models applied in waste management have optimized recycling processes, achieving a 25% increase in
material recovery rates in municipal waste facilities [56, 57].
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‑ Weaknesses: Environmental systems are complex and data quality is a concern, it may affect AI modeling
accuracy and reliability. Additionally, there are ethical considerations especially howAI can help onmanaging
natural resources without prejudice of fairness and equity in resource distribution.

‑ Numerous studies have shown that statistical models and simulations supported by artiϐicial intelligence
have become essential tools in environmental engineering. In particular, they help improve the accuracy of
pollution forecasting and optimize strategies for resource management.
A recent study by Li et al. highlighted that using AI‑basedmodels to predict air quality increased the accuracy
of pollution forecasts by 35%, allowing authorities to take proactive measures to reduce emissions.
To validate these ϐindings, simulation‑based studies were performed using real‑time sensor data to predict
pollution levels under varying environmental conditions. AI models outperformed conventional methods
by achieving a 20% higher accuracy rate and reducing false positive alerts by 15%, further solidifying their
reliability in environmental monitoring [58].
Moreover, quantitative assessments have demonstrated that AI‑driven water resource management systems
can increase allocation efϐiciency by 18% during drought conditions, based on historical weather and usage
data [59].

6. Electrical and Energy Engineering:

‑ Strengths: AI is being used in electrical engineering to improve areas like smart grids and renewable energy
management. These innovations are helping power distribution networks become more efϐicient and envi‑
ronmentally friendly.
These technologies help optimize energy use, minimize wastage, and facilitate the integration of renewable
energy sources.
Broader case studies reveal that AI‑driven demand response systems in commercial buildings have reduced
peak energy loads by 15%, contributing to grid stability. Similarly, in wind energy farms, AI has improved tur‑
bine efϐiciency by 10% through real‑time adjustment of blade angles, based on predictive weather analytics
[60].

‑ Weaknesses: The integration of AI into legacy power systems is challenging, as these systems were not origi‑
nally designed for such advanced technology. Additionally, issues related to data privacy and cybersecurity
are signiϐicant concerns in these applications, given the involvement of critical infrastructure.

‑ It has been empirically proven through simulations and statistical analyses that AI in electrical and energy
engineering signiϐicantly improves energy distribution efϐiciency and enhances the integration of renewable
energy sources.
Ricciardi et al. showed that integrating AI into smart electrical grids reduced energy losses by 10% and in‑
creased the grids’ capacity to incorporate renewable energy sources like solar andwind, enhancing the overall
stability of the electrical system.
QuantitativebenchmarkingofAI‑enhanced smart grids against traditional gridmanagement systems revealed
a 30% improvement in load balancing efϐiciency and a 25% reduction in outage durations. These metrics
demonstrate the potential of AI to revolutionize energy distribution networks while accommodating renew‑
able energy integration.
Statistical simulations of AI‑based renewable energy forecasting models showed an average 15% improve‑
ment in prediction accuracy compared to traditional methods, resulting in a signiϐicant reduction in reliance
on backup energy sources [61, 62].

7. Aerospace and Space Exploration:

‑ Strengths: AI implementation in aerospace enhances safety andoperational effectiveness throughautonomous
systems and predictive maintenance. AI‑driven robots and rovers are crucial for space exploration, enabling
autonomous navigation and data analysis on extraterrestrial terrains.

‑ Weaknesses: The reliability and robustness of AI systems in extreme conditions, such as space or high alti‑
tudes, require further testing. Additionally, the high ϐinancial and research investments needed for develop‑
ing these systems present a barrier to widespread adoption.
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‑ TheapplicationofAI hasbeen shown to increase safety andefϐiciency in aerospace, particularly in autonomous
ϐlight systems and predictive maintenance, which reduces operational risks.
A study by Smith et al. found that AI algorithms used for predictive maintenance in aerospace components
helped reduce the risk of in‑ϐlight failures by 40%. This improvement has signiϐicantly boosted both safety
and operational efϐiciency for airlines.
Additionally, NASA’s application of AI in autonomous rovers has demonstrated a 25% increase in mission
efϐiciency through optimized route planning and real‑time obstacle avoidance.
In the defense sector, AI‑enabled autonomous drones have successfully completed surveillancemissionswith
a 30% increase in target identiϐication accuracy compared to traditional systems. Additionally, in the commer‑
cial aviation industry, case studies highlight that predictive maintenance systems have extended the lifespan
of key components by 15%, reducing the frequency of replacements [62–64].

3.3. Applications of AI Across Engineering Disciplines:
AI technologies have hadmarked effects upon one of the oldest andmostwide‑ranging engineering disciplines:

mechanical engineering. In mechanical engineering optimization, AI‑powered design generates more optimal and
creative designs using algorithms. Some types of AI, generative design, use machine learning to develop multiple
options for a given design and thenmake sense quickly in order to get the most impactful form. But AI also reduces
the time and cost of designingmechanical partswhile improving their performance aswell [7]. Autodesk, who have
faced this approach from the beginning, enable us to fabricate forms that, while potentially far better than anything
developed by human intuition, are often impossible to realize with manual methods.

Another important application is predictive maintenance, where AI predicts equipment failures before they
happen, reducing downtime andmaintenance costs. Machine learning algorithms analyze historical data to forecast
potential issues, allowing for proactive maintenance strategies to be implemented.

For example, neural networks monitor the health of machinery in real‑time, providing early warnings of pos‑
sible malfunctions [12]. Industries such as aerospace and automotive have widely adopted these technologies to
ensure continuous and efϐicient operations.

In addition to that, AI technologies, especially in robotics and automation, have transformed manufacturing
processes. Advanced robotics, driven by AI, can perform highly complex tasks with precision and consistency. Ma‑
chine learning algorithmsoptimizeproduction lines, improving efϐiciency andminimizingwaste. Anotable example
is AI in additive manufacturing (3D printing), where AI optimizes printing parameters to enhance the quality and
strength of printed parts [6, 65].

For instance, inmedicine, 3Dprinting enhancedbyAI is used to create customprosthetics and implants tailored
to speciϐic patient needs.

In the future, AI will be crucial in accelerating the discovery of newmaterials with desired properties. Machine
learning techniques have been developed to predict material properties based on their atomic structure, reducing
the need for laborious and expensive experiments. For example, Jha et al. [66] appliedmachine learning to discover
new materials for high‑capacity batteries, signiϐicantly speeding up the research and development process. The
ability to make rapid predictions and synthesize new materials is particularly important in ϐields like energy and
manufacturing, where rapid innovation can provide signiϐicant competitive advantages.

The development of AI in civil engineering leads to smart infrastructure by integrating digital technologies
into physical infrastructure. Empowered by AI, smart sensors are used tomonitor data analytics that help optimize
infrastructure performance andmaintenance. For instance, AI algorithmsmanage trafϐic ϐlow in smart cities, reduc‑
ing congestion and ensuring safety [14]. AI’s ability to process enormous amounts of data and provide real‑time
insights drives the transformation of urban planning and infrastructure management, making cities more livable
and sustainable.

Figure 4 provides a heatmap visualization of AI’s impact on trafϐic optimization, showcasing how AI‑driven
algorithms dynamically adjust trafϐic ϐlow and reduce congestion in urban environments.
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Figure 4. Trafϐic OptimizationUsing AI Heatmap illustrating the impact of AI‑driven trafϐic optimization algorithms
on urban infrastructure. The color gradient represents trafϐic intensity, with lighter shades indicating reduced con‑
gestion achieved through AI‑based real‑time trafϐic management systems.

AI also enhances constructionmanagement by improvingproject planning, scheduling, and resource allocation.
Machine learning algorithms predict project outcomes based on historical data, leading to better decision‑making
[67, 68].

AI‑powered drones and robots have become essential tools for inspecting and monitoring construction sites,
delivering greater accuracy and enhancing safety [15]. These advanced technologies are reshaping the construction
industry by reducing the likelihood of human error, increasing efϐiciency, and setting new standards for safety.

When it comes to structural health monitoring, AI is key to evaluating the condition of infrastructure and an‑
ticipating potential issues. By analyzing data from sensors embedded within structures, AI algorithms can detect
anomalies and assess overall integrity.

This vision is not only helping to preserve the safety of infrastructure work but also increasing its life‑cycle
[20]. Consider how AI is used to monitor bridges, and tunnels receive proactive alerts along with an exact copy of
maintenance recommendations if a fault occurs.

The application of artiϐicial intelligence (AI) technologies has already enabled a great deal in the ϐield of elec‑
trical engineering. And smart grids as AI‑enabled electricity distribution networks: more efϐicient, reliable, envi‑
ronmentally friendly [69].

It is the AI which optimizes the ϐlow of electricity, control and regulation to manage demand and successfully
include renewable sources like solar or wind energy into networks. The result, fewer energy losses and thus more
stable grids [23]. AI is also crucial in coordinating renewable energy able to forecast the amount of clean power it
will produce by using machine learning against weather forecasts, which can help maximize our use of renewables
and lower fossil fuel dependence [24]. For instance, Google’s Deep‑Mind has announced partnerships with energy
companies to predict wind farm output lowers the cost of delivering renewable power and improves its value— in
by doing this increases reliability.

More AI is needed for renewable energy sources, e.g. solar and wind power. Artiϐicial Intelligence learns how
weather is affecting the power production and its usage to optimize renewable energies instead of using fossil fu‑
els. This in turn help with the prevention of failures also for wind, water and sun infrastructure [24]. This is why
renewable energy systems becomemore reliable and cheaper, supporting the worldwide transition to clean power
resources.

Within the realm of electronic design, AI has a huge impact through Electronic Design Automation (EDA) —

15



Journal of Intelligent Communication | Volume 04 | Issue 01

where machines can learn to predict cycle times and demographics based on thousands or millions of parts.
AI‑driven EDA tools automate the design of electronic systems and circuits, optimizing the layout and perfor‑

mance of components, which leads to reduced design time and lower costs [70, 71].
These AI tools also make it possible to create more complex and efϐicient electronic systems [26]. In the semi‑

conductor industry, for instance, AI is used to design intricate chip architectures that push the limits of computing
performance and efϐiciency.

Aerospace engineering, focused on designing and developing aircraft and spacecraft, has seen signiϐicant ad‑
vancements thanks to AI. AI‑powered autonomous ϐlight systems boost the safety and efϐiciency of aircraft opera‑
tions. Machine learning algorithms analyze vast amounts of ϐlight data to optimize ϐlight paths, improve fuel efϐi‑
ciency, and ensure safe landings. AI‑guided autonomous drones are also widely used for tasks like surveillance and
delivery [27].

In aerospace, predictive maintenance is another critical area where AI shines. By monitoring the health of
aircraft components, AI can predict potential failures. AI algorithms analyze data from sensors within the aircraft
to spot early signs of wear and tear, allowing for timely maintenance and reducing the risk of in‑ϐlight failures [29].

AI is revolutionizing transportation engineering by improving how we manage trafϐic, making vehicles safer,
and paving the way for autonomous driving. AI‑powered trafϐic management systems analyze real‑time data from
cameras and sensors to optimize trafϐic ϐlow and reduce congestion [72]. When it comes to vehicle safety, AI‑driven
advanced driver‑assistance systems (ADAS) play a crucial role in avoiding collisions and monitoring drivers, signif‑
icantly lowering the risk of accidents [73].

The development of autonomous vehicles also heavily depends on AI technologies like computer vision and
deep learning, which enable vehicles to navigate complex environments andmake split‑second decisions [74]. Com‑
panies like Tesla andWaymo are leading the charge in creating AI‑driven autonomous vehicles that are set to trans‑
form the future of transportation.

In Table 10, all the information covered in this section is presented.

Table 10. AI in Transportation Engineering.

Aspect Details

Trafϐic Management AI analyzes real‑time data to optimize trafϐic ϐlow
Vehicle Safety AI‑driven ADAS for collision avoidance and driver monitoring

Autonomous Driving Uses computer vision and deep learning for navigation and decision‑making
Examples Tesla and Waymo’s autonomous vehicles, AI in trafϐic management systems

In aerospace engineering, predictive maintenance leverages AI to keep a close watch on the health of aircraft
components and foresee potential issues. AI algorithms process data from sensors embedded in the aircraft to spot
early signs of wear and tear, allowing for timely maintenance and reducing the risk of in‑ϐlight failures [29].

AI is becoming increasingly vital in space exploration, with AI‑driven robots and rovers taking on crucial tasks
like planetary exploration, sample collection, anddata analysis. Machine learning algorithmsprocess huge amounts
of data from space missions, offering valuable insights and improving mission outcomes [30]. For example, NASA’s
Mars rovers use AI to autonomously navigate the Martian surface, identifying areas of interest for further explo‑
ration and optimizing their routes.

AI integrationwith advanced technologies, such as the Internet of Things (IoT) and blockchain is driving trans‑
formation in engineering processes. The real‑time data IoT provides can be processed by AI algorithms immedi‑
ately and decisions with correct assessments of the situation made. In smart grids it leverages IoT data to improve
the distribution of energy dynamically in time, making operation more efϐicient and sustainable. In the meantime,
blockchain provides highly robust security and transparency to AI operations— something critical for applications
that deal with sensitive data or affect core infrastructure. These powerful duo is empowering faster, safer and in‑
novative engineering processes [75]. For instance, a combination of AI and blockchain is experimented in supply
chain management to bolster transparency, traceability as well as efϐiciency.

In collaborative systems, advanced AI paradigms like federated learning and reinforcement learning offer inno‑
vative solutions to address challenges associatedwith distributed data environments and complex decision‑making.

16



Journal of Intelligent Communication | Volume 04 | Issue 01

Federated learning enables secure and collaborative data analysis across multiple stakeholders, while reinforce‑
ment learning facilitates adaptive decision‑making in dynamic and interconnected systems, paving theway formore
robust and efϐicient engineering solutions [76–78].

It optimizes processes, enhances safety and improves material synthesis;AI is changing chemical engineering.
Reaction outcomes can be predicted bymachine learning algorithms [79]which could help to improve the efϐiciency
and sustainability of chemical processes; Material synthesis AI helps accelerate the ϐinding of new catalysts, and
materials with speciϐic properties by using advanced pattern recognition in very large sets of experimental data. In
addition, AI enhances process safety by reel‑timemonitoring the chemical plants and providing advancedwarnings
of potential hazards to let companies take preventive steps [80, 81].

In Table 11, all the information covered in this section is presented.

Table 11. AI in Chemical Engineering.

Aspect Details

Process Optimization Predicts reaction outcomes, optimizes reaction conditions
Material Synthesis Accelerates discovery of new catalysts and materials
Process Safety Monitors chemical plants in real‑time, predicts hazards
Examples AI in monitoring chemical reactions, optimizing performance and safety

These new AI systems can watch with a digital eye as chemical reactions take place and make adjustments
while providing warnings should things look dangerous.

Biomedical engineering foes through a phase of revolution with the power and applications that AI have, re‑
placing traditional medical treatments into potential solutions for patient diagnosis treatment care recordings. For
medical imaging, AI has the main advantage of connection to MRI, CT and X‑rays with complete precision hence
able to easily catch any anomaly which might be missed by human eyes For example, Litjens et al. In another study
[82], the authors achieved 15% higher breast cancer detection accuracy by using a convolutional neural network
(CNN) method.

In prosthesis AI is also gaining new grounds. Tailored prosthetic limbs that lighten, without compromising
on the strength can even be made by using machine learning models in order to scrutinize one’s pateint data. In
addition to this prosthetic functional improvement, their results are in line with those of Hensman et al., as shown
that personal quality should be improved among these patients [83].

Furthermore, AI has been instrumental in pushing personalized medicine forward. By analyzing complex ge‑
netic and medical information, AI can help create customized treatment plans that lead to much better outcomes
for patients.

Google DeepMind’s AI system formedical imaging exempliϐies this transformation. Using convolutional neural
networks (CNNs), the system has improved early detection rates for retinal diseases by 15%, outperforming tradi‑
tional diagnostic methods. This demonstrates how AI enhances diagnostic precision and reduces the likelihood of
missed anomalies [84].

In Table 12, all the information covered in this section is presented.

Table 12. AI in Biomedical Engineering.

Aspect Details

Medical Imaging Enhances accuracy of MRI, CT, and X‑ray scans
Prosthetics Design Creates customized prosthetics with optimal weight and strength

Personalized Medicine Develops tailored treatment plans based on genetic and medical data
Examples AI in breast cancer detection, AI‑enhanced prosthetic limbs, predictive models in cancer treatment

For example, Kourou et al. [85] used predictive models to create personalized cancer treatment plans, which
led to much better outcomes for patients.

The future of AI in personalized medicine is incredibly promising. By combining AI with genomics and wear‑
able devices, we can develop highly customized treatment plans that factor in a person’s unique genetics and daily
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lifestyle.
AI algorithms can analyze real‑time data from wearable sensors to monitor a patient’s health and offer per‑

sonalized therapeutic recommendations. This approach not only enhances the effectiveness of treatments but also
boosts patient adherence to medical prescriptions, leading to better overall clinical outcomes [86].

3.4. Emerging Applications of AI in Engineering:
While the article coversmanywell‑established ϐields, it’s also important to highlight the emerging applications

of AI in areas like biomedical engineering and materials science.
Indeed, since 2020, emerging AI applications in engineering have gainedmomentum, thanks to unprecedented

technological advances, reϐlecting the growing complexity and interdisciplinarity of AI applications. For example,
the discovery of advanced materials has been accelerated and the personalization of medical treatments has been
improved [3, 5, 21].

In biomedical engineering, AI is transformingmedical imaging, prosthetics design, and personalizedmedicine.
AI algorithms can analyze complex biological data to create customized treatment plans, leading to better patient
outcomes [86]. Furthermore, forward‑looking applications such as AI in genomics and material science showcase
the potential for groundbreaking advancements. Table 13 summarizes key examples, performance metrics, and
computational requirements for these applications.

Table 13. Forward‑Looking Applications of AI.

Aspect Details Performance Metrics Computational Requirements

AI in Genomics Prediction of genetic mutations for
personalized medicine

40% reduction in analysis time;
90% accuracy

Genomic datasets >1 PB; HPC
clusters

AI in Materials
Science

Accelerated discovery of new materials with
speciϐic properties

+20% accuracy in property
prediction; 35% R&D time

reduction
Cloud/Edge‑based ML models

In materials science, AI is speeding up the discovery of new materials by predicting how they will behave
based on their atomic structures. This dramatically accelerates innovation [75]. AI helps researchers identify new
materials much faster than traditional methods would allow. For example, Jha et al. [66] used machine learning to
discover materials for high‑capacity batteries, greatly reducing the time needed for research and development. AI
is also crucial in predicting material properties from their atomic structures, a task that usually requires lengthy
and complex experiments [87].

Furthermore, Cloud‑based AI systems have also become pivotal in accelerating material discovery by enabling
researchers to scale computational simulations across distributed infrastructures. Additionally, edge computing
supports real‑time monitoring and optimization of material manufacturing processes, reducing costs and improv‑
ing efϐiciency. These advancements highlight the importance of scalable AI systems in addressing both computa‑
tional and operational challenges in materials science [88, 89].

Xie and Grossman [90] highlighted this potential by creating a model that accurately predicts the thermal con‑
ductivity of materials, demonstrating how AI can streamline the discovery process. Additionally, AI is optimizing
manufacturing processes, making themmore efϐicient and cost‑effective. Zhang et al. [91] usedmachine learning to
ϐine‑tune 3D printing parameters for composite materials, leading to components with better quality and strength.
This optimization not only improves the manufacturing process but also aids in developing superior materials and
products.

As these emerging applications gain traction, they pave the way for innovative solutions that address both
longstanding challenges and new opportunities in engineering.

In Table 14, all the information covered in this section is presented.
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Table 14. Emerging Applications of AI.

Aspect Details

Biomedical Engineering AI in medical imaging, prosthetics design, personalized medicine
Materials Science Predicts material properties, accelerates discovery and development

Examples AI in discovering newmaterials for batteries, predicting thermal conductivity of materials

3.5. Emerging Challenges and Future Directions:
As AI continues to evolve, several new challenges and future directions have emerged from the analysis of

currentmethods. Tackling these challenges and exploring these newpathswill be key to ensuring ongoing progress
for AI in engineering.

1. Emerging Challenges:

‑ Data Privacy and Security: As AI‑driven systems increasingly handle sensitive and large‑scale datasets, ensur‑
ing data privacy and security has become a top priority. There’s a growing need for strong encryption meth‑
ods, secure data storage solutions, and policies that comply with international data protection standards.

‑ Scalability and Integration: Scaling AI solutions to work efϐiciently in real‑world, large‑scale engineering sys‑
tems is a signiϐicant challenge. Integrating AIwith existing legacy systems often requiresmajor infrastructure
upgrades and can face resistance from stakeholders who are used to traditional methods.
In distributed data environments, federated learning emerges as a promising solution, allowing collabora‑
tive model training while safeguarding data privacy. Similarly, reinforcement learning can enhance system
adaptability and decision‑making in complex, dynamic scenarios, enabling AI systems to operate efϐiciently
across interconnected infrastructures. These paradigms address key challenges while also introducing novel
opportunities for scalable and ethical AI integration [92, 93].

‑ Bias and Fairness in AI: AI systems can be vulnerable to biases in the training data, whichmight result in unfair
or less‑than‑ideal outcomes in critical engineering applications. It’s crucial to ensure diversity in data and to
develop algorithms that can reduce bias for the ethical use of AI technologies.

2. Future Directions:

‑ Integrationwith Emerging Technologies: Combining AIwith technologies like the Internet of Things (IoT) and
blockchain opens up exciting new possibilities. For example, IoT can supply real‑time data that improves the
accuracy of AI‑drivendecisions in smart infrastructure, while blockchain can ensure the security and integrity
of these processes.

‑ Advancements in AI‑Driven Design and Optimization: Future research should aim to reduce the computational
demands of AI‑driven design methods, making them more accessible to a wider range of industries. Addi‑
tionally, exploring new algorithms that can handle uncertainty and variability in design parameters will be
crucial for driving further innovation.

‑ Enhanced Human‑AI Collaboration: Creating frameworks that enable more effective collaboration between
human engineers and AI systems could lead to more innovative solutions. This could involve AI systems
offering real‑time insights, suggesting design alternatives, or assisting in decision‑making processes, thereby
boosting creativity and problem‑solving capabilities in engineering.

These challenges and directions not only highlight the current limitations of AI in engineering but also point
towards the future advancements that are necessary for maximizing its potential.
Support with Statistical Analysis and Simulation:

The statements and ϐindings in this survey are backed by statistical analysis and simulationswherever possible.
For instance, the effectiveness of AI‑driven predictive maintenance has been proven through an analysis of failure
rate data from industrial machinery, showing a signiϐicant decrease in downtime and maintenance costs. Similarly,
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simulations comparing AI‑based design optimization with traditional methods have shown improvements in both
efϐiciency and the quality of the designs produced.

To further support the discussion, statistical methods have been used to evaluate the performance of various
AI techniques across different engineering applications. These analyses provide strong quantitative backing to the
qualitative assessments made throughout the survey, ensuring that the conclusions drawn are both reliable and
valid. Looking ahead, future research should focus on using statistical and simulation‑based methods to further
validate and improve AI applications in engineering, ensuring they are both practical and effective in real‑world
environments.

Furthermore, statistical evaluations of federated learning techniques have demonstrated their efϐicacy inmain‑
taining model performance while preserving data privacy, particularly in distributed healthcare and industrial en‑
vironments. Similarly, simulations of reinforcement learning in manufacturing have shown signiϐicant reductions
in energy consumption and operational waste, highlighting the adaptability of these methods in dynamic systems
[94, 95].

4. Challenges in AI Integration
The thought of utilizing AI to aid in the development process is quite daunting, while it would offer a great deal

for advanced engineering but at large there still hurdles. These problems range from worrying about data privacy
and security, to how you need huge datasets as well as complications with building an AI into your system. As AI is
heavily reliant on data, maintaining the integrity of an AI system requires safeguarding this information from cyber
threats.

It can be difϐicult and costly to obtain massive datasets needed for the training or validation of AI models,
particularly in ϐields where data collections require a lot of time. Furthermore, AI implementation in conjoint with
prevailing engineering system can be arduous due to compatibility issues, requisite for infrastructure upgradation
and resistance towards adaptation that are the major challenges when it comes to imparting AI.

Protecting data privacy and security is essential when using AI. It’s important to use strong encryption and
secure storage solutions to keep sensitive information safe from cyber threats [96].

Scalability poses a signiϐicant challenge, particularly in engineering applications requiring real‑timeprocessing
and large‑scale deployments. Cloud‑based AI systems, with their elastic computational capabilities, offer a promis‑
ing solution by dynamically scaling resources to meet ϐluctuating demands. Additionally, edge computing plays a
crucial role in reducing latency and bandwidth usage by processing data locally, closer to its source. This hybrid ap‑
proach, combining cloud and edge computing, ensures that resource‑intensive tasks, such as real‑time monitoring
of smart grids, can be managed efϐiciently while maintaining system responsiveness [97, 98].

Moreover, privacy‑preserving AI techniques, like federated learning, make it possible to train models on data
from different sources without sacriϐicing individual privacy [20]. Setting clear policies and regulations for how
data is used, and making sure they comply with international data protection standards, is also vital for building
trust in AI systems [99, 100].

To address the challenges of integrating AI into existing engineering systems, it’s essential to develop standard‑
ized protocols and invest in the right infrastructure [101].

Developing common standards for how data is collected, stored, and shared is crucial for making AI adoption
smoother, while also ensuring data security and privacy. It’s equally important to invest in scalable infrastructure
that can handle large‑scale AI deployment, which includes upgrading outdated systems and offering AI and engi‑
neering training for staff [102].

It’s also important to put bias mitigation strategies in place for AI algorithms, like using more diverse training
datasets, to make sure that AI solutions are both fair and reliable [103].

Further, there is a pressing need for consistent guidelines and frameworks to be established regarding the
deployment of AI in engineering. Lacking these standardized frameworks can create issues regarding the use of AI
in various sectors that require different areas to function and cooperate [102].

Going forward, one of the key areas of research will be how to integrate AI with other emerging technologies
like Internet Of Things (IOT) and blockchain. Not only will this integration streamline engineering processes but
it will also step up the security and transparency of AI‑powered operations. Yet key challenges— namely, tackling
integration and legacy systems, as well as considering privacy concerns over data —must be addressed to unlock
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AI’s sweeping potential in engineering.
Addressing these challenges requires a concerted effort from researchers, practitioners, and policymakers to

ensure the seamless and ethical integration of AI into engineering systems.

4.1. Ethical and Social Implications:
There will, however, be signiϐicant ethical and social questions that arise with the implementation of AI into

engineering. These include worries that job automation will affect jobs and the culpability of AI‑based decisions,
whether or not this type of technology follows ethics. Meanwhile, automation of tasks that have historically been
performed by humans could lead to unemployment which in turn necessitates the development of strategies for
reskilling and transitioning workforces [104].

Furthermore, decision‑making processes of AI systems should be clear and make their behaviour explainable
in order to retain trust towards engineers as well as stakeholders [105].

A further ethical issue is the potential bias found in AI algorithms which could lead to discrimination or unfair
outcomes. In order tomitigate this, training datasets must be crafted with a careful attention to diversity [103] and
anti‑bias strategies in all the development stages.

In Table 15, all the information covered in this section is presented.

Table 15. Ethical and Social Implications.

Aspect Details

Impact on Employment Job displacement due to automation, need for workforce re‑skilling
Accountability Ensuring transparent and accountable AI‑driven decisions

Bias in AI Algorithms Mitigating bias through diverse training datasets and bias mitigation strategies
Examples Ethical considerations in AI deployment, transparency and accountability measures

5. Future Prospects of AI in Engineering
The future for AI in engineering is quite simply, revolutionising andwill seemajor breakthroughs across a num‑

ber of sectors. For example, the development of AI will likely extend to other leading ϐields in biotechnology such as
genomics and wearable devices within biomedical engineering. Such a fusion in technology could potentially bring
breakthroughs to personalized medicine—where AI siphons through the real‑time data off wearable sensors, and
mixes them with genetic information for hyper‑tailored treatment plans.

Additionally, AI is likely to play a major role in the progression of touch and feel prosthetics with semi‑natural
response rates as well learning how amputees move so that these devices may adapt accordingly.

Looking ahead, the temporal analysis suggests an acceleration in AI progress, driven by the interaction with
emerging technologies such as blockchain and IoT. These developments: i) broaden the possible future applications
of AI; ii) lay the foundation for greater scalability and security in engineering systems. In fact, future AI advance‑
ments will also focus on enhancing scalability through the integration of cloud and edge computing technologies.
For instance, cloud‑based platforms will support resource‑intensive tasks such as large‑scale simulations, while
edge computing will enable real‑time adjustments in engineering systems. This hybrid architecture will be critical
in managing the increasing complexity and computational demands of next‑generation engineering applications
[106].

Figure 5 provides a detailed Gantt chart outlining the timeline for integrating AI into legacy systems and IoT‑
enabled smart grids.
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Figure 5. Gantt chart detailing the timeline for AI integration, from preliminary analysis to testing and validation.

The chart highlights key phases, including preliminary analysis, system development, and testing, offering a
structured approach to overcoming integration challenges.

The future in materials science is just as exciting. AI‑driven research is set to speed up the discovery of new
materials with unique properties tailored to meet speciϐic industrial needs. By combining AI with high‑throughput
experimentation and computational modeling, researchers can predict and create materials more efϐiciently [107].

This can greatly decrease the time from discovery to pressing some magic play button (e.g., in ϐields such as
energy storage for faster materials discoveries leading to better batteries or renewable energy solutions).

Furthermore, the ability of AI to assess and forecast howmaterials are likely to behave and how long they could
last will help in designing better and more durable structures.

Recent advances have demonstrated the transformative role of AI across multiple engineering domains:

• Chemical Engineering: Generative AI, particularly large language models (LLMs), has been pivotal in designing,
scaling up, and optimizing chemical and biochemical processes. LLMs interpret complex chemical and biological
data, facilitating the discovery of novel products and improving process design for sustainability [108–110].

• Materials Science: AI systems like Google’s GNoME have revolutionizedmaterials discovery by identifying over 2
million new stable inorganic crystal structures, expediting material innovation and reducing development costs
[111].

• TransportationEngineering: AI enhances trafϐic ϐlowpredictionby integratingweather data, leading to improved
safety and efϐiciency in connected vehicles. Additionally, AI‑driven driver monitoring systems detect distracted
behaviors, contributing to accident prevention [108, 111].

• Aerospace Engineering: AI applications in aeronautical engineering include fault detection in aerospace struc‑
tures, utilizing AI to identify structural issues, thereby enhancing safety and maintenance efϐiciency [112].

• Medical Diagnostics: AI improves diagnostic accuracy through natural speech dialogue systems and automated
detection methods, such as identifying microaneurysms in diabetic retinopathy, enhancing early detection and
treatment [113].

With the advancement in engineering enhanced with AI, the Internet of Things and the Blockchain, there is
hope for a bright future of engineering. IoT could in the future provide AI systems with constant real‑time data
making the insights provided by the AI systemsmore effective and applicable in a number of engineering steps. For
example, AI systems and IoT based smart grids which are able to control the use and the distribution of electricity
in real time shall make it easy to have cleaner and smarter energy systems. On the other hand, the blockchain
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technology is expected to guarantee the safety and accuracy of the operations of the AI especially if conducted on
sensitive data and critical development infrastructure.

To realize these future prospects further analysis and experimentation is necessary. There is a need to enhance
the ability and the safety of the AI system, to increase the interpretability of the AI systems as well as to support
a cross disciplinary approach. It is the hope of the engineering society by addressing these issues that the overall
beneϐits that AI will bring about will start a new era of engineering— innovative, efϐicient, and sustainable in every
aspect and level.

6. Conclusions
There is no ambiguity regarding the fact that artiϐicial intelligence has already brought a revolution in numer‑

ous disciplines of engineering, especially design, manufacturing, maintenance, and optimization. AI increases pro‑
duction as well and enhances the quality and reliability of products and services. Over time, as AI technology pro‑
gresses, the role of engineering and its alternatives is likely to improve further with developing more efϐicient and
eco‑friendly solutions.

Through a comprehensive analysis of AI’s current state and future potential, this study aims to serve as a guid‑
ing framework for researchers and industry professionals.

The potential for AI in engineering is tremendously great. It is expected that further studies are needed in
order to solve current issues and to open other fronts. Deepening the development of AI algorithms, simplifying
AI models, and enhancing AI with other modern technologies, like IoT and blockchain, is a long basic movement
forward.

Telescoping the focus beyond just image recognition, it is particularly important to advance AI research in re‑
gard of building AI algorithms that are robust enough to better withstand various adversarial attacks and also cope
with uncertainties one faces in a real‑world scenario. Such strong AI models will help boost the trustworthiness
and the overall safety of engineering systems and promote their acceptance by engineering practitioners. Also, as
in other industries, it is important to ensure that AI models are more user friendly, so to say, more explainable and
less of a black box. This allows engineers as well as other stakeholders to be comfortable with AI based decision
making as they can appreciate and validate the decision‑making process of AI which is crucial in situations where
making such decisions is vital.

Always interlacing AI with the IoT and the blockchain intertwines aswell, becomes another step towards deep‑
ening and enhancing engineering processes. The IoT will supply information in real time for the development of
AI models and hence the accuracy and speed of making decisions will improve. As a result, it will also make the
application of AI more effective as the blockchain offers protection and protection of the AI actions, which is very
important in situations of extreme demand for data security and preservation. These integrations can help improve
the efϐiciency and the security of engineering processes facilitating new inventions.

As highlighted throughout this paper, the successful application of AI in engineering requires careful selec‑
tion of methodologies tailored to speciϐic challenges and objectives. Table 16 presents a comparative analysis of
two widely used AI approaches, Deep Learning and Ensemble Methods, focusing on their application to predictive
maintenance.

Table 16. Comparison Matrix: Deep Learning vs. Ensemble Methods.

Criteria Deep Learning Ensemble Methods

1 Accuracy High Medium
2 Scalability Medium High
3 Robustness High High
4 Computational complexity High Medium
5 Data requirement High Medium

This comparisonunderscores the trade‑offs betweenaccuracy, scalability, and computational complexity,which
are critical considerations for practical implementation.

AI can be regarded as a powerful tool in different spheres such as engineering, yet beneϐits extend only if cer‑
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tain challenges exist and are addressed. The ϐirst andmost important step is to ensure the protection of privacy and
security of information in the AI systems so as to prevent any cyberattacks. One other challenge is obtaining and
organizing the huge volumes of data necessary for the training and validation of the systems, particularly in areas
where data collection involves a lot of funds or time. Also, the challenge of enriching the content of engineering sys‑
tems with artiϐicial intelligence may be even more tedious when extensive changes in the industrial infrastructure
are necessary and the willingness to change is limited.

All in all, it is possible to draw certain conclusions about the impact of Artiϐicial Intelligence on the evolution
of engineering industries concentrating on different aspects such as improved productivity in design, production,
maintenance and optimization of functions. A critical analysis of existingmethods for implementing AI systemswas
done in this study, mainly aiming at their current and further developments. As for the remainder, it is necessary to
address issues associated with the privacy and security of data, the scalability of the system, and its discrimination
in order for AI to remain successful.

Integrating AI with emerging technologies like IoT and blockchain offers exciting opportunities to improve the
efϐiciency and security of engineering processes. Developing robust, transparent, and scalable AI systems, along
with effective human‑AI collaboration, will be crucial for fully unlocking AI’s potential in engineering. By combining
the strengths ofAI andhumanexpertise, collaborativeAI candrive signiϐicant advancements indesign, optimization,
and innovation [104]. These systems can boost creativity and problem‑solving by offering data‑driven insights and
suggesting innovative solutions.

As the ϐield progresses, ongoing research and development will be key to overcoming current challenges and
discovering new opportunities. Statistical analysis and simulation will continue to play a vital role in validating
and improving AI applications, making sure they are practical and effective in real‑world situations. Ultimately,
the future of engineering will be shaped by how well AI technologies are integrated, leading to more innovative,
efϐicient, and sustainable solutions.

In Table 17, all the information covered in this section is presented.

Table 17. Future Prospects of AI in Engineering.

Aspect Details

Biomedical Engineering AI with genomics and wearables, advanced prosthetics
Materials Science AI‑driven discovery and development of new materials

IoT and Blockchain Integration Enhancing real‑time data analysis and security in engineering processes
Research and Development Addressing challenges, enhancing algorithm robustness and security, interdisciplinary collaborations

Improving the interpretability of AI models, known as explainable AI, is essential for building trust and trans‑
parency in engineering. Engineers need to understand and validate AI‑driven decisions, especially in safety‑critical
applications. Techniques like feature importance analysis, model‑agnostic interpretability methods, and visual ex‑
planations can help clarify how AI models make decisions [114]. Making AI more transparent not only builds trust
among engineers and stakeholders but also helps identify and reduce potential biases in AI systems.

A promising future for AI in engineering depends on developing algorithms that can withstand adversarial
attacks and handle uncertainties in real‑world situations. These algorithms need to be robust, reliable, and trans‑
parent to enhance the safety and trust in AI‑based engineering systems. For instance, learning‑based robust control
techniques can improve the resilience of autonomous control systems, ensuring they perform stably even under un‑
certain conditions [104].

Future research should concentrate on improving the robustness of AI algorithms, ensuring they can success‑
fully handle uncertainties and withstand adversarial attacks. At the same time, greater transparency in AI‑driven
decisions will be essential to build trust and encourage the widespread adoption of these systems in critical engi‑
neering applications.
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