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Abstract: The current paper provides a cutting-edge information data length-theoretic approach to the transient
M/M/∞ queueing system. This is the first investigation that unifies information data length and queueing theories.
Notably, an exposition of a significant real-life application of the M/M/∞ queueing system was addressed, namely
the computation of the common average time for unsaturated site visitor flows beneath double-parking situations.
This adds another dimension of the significance of the current work. On another note, the significant impact of
both time and the number of states for the transient M/M/∞ queue on both the upper and lower bounds of the
obtained information data length is observed and noted, which is a completely unprecedented innovative research
methodology. The undertaken analytical technique in this paper is based on calculating the information data
length for the M/M/∞ transient queue rather than going into higher complexities to go through a non-standard
integral to be accomplished. It was a necessity to find both the upper and lower bounds of such a desired-to-be-
calculated integration. The data collection process to carry out the numerical validation of the key analytic
findings was conducted by choosing values for the parameters of the M/M/∞ transient queue to reveal both
obtained upper and lower bounds numerically. The paper concludes with some challenging open problems,
combined with concluding remarks and future research pathways.

Keywords: information data length; transient queues; M/M/∞ queueing system

1. Introduction
When clients arrive and need assistance from servers, a simple queueing structure is in place. If there are no

open servers, patrons can join a queue; the queue discipline dictates the order in which patrons are served.
When designing or enhancing service systems, these models aid in the computation of performance metrics.

Longer wait times are a result of higher utilization levels, and delays get longer as utilization rises.
Variability and system size also matter; larger systems have shorter delays and more variable systems have
longer delays at any given utilization level. These ideas have effects on service system evaluation and capacity
planning [1].

A typical model for arrivals in queueing systems is the Poisson process. It is assumed that consumers arrive
one at a time and that the probability of arriving at any given moment is independent of both the time and
possibility of arriving before other customers. This model is often applied to emergency rooms and customer
service call centers and can be tested for goodness of fit using statistical measures [2].

In the context of steady (non-time dependent) queues, namely these queues with non-time dependent
probability density function. For example, the M/M/s or Erlang delay model is a commonly used queueing model
in service systems, i.e., the assumption is that there will be one line serving the same servers, with an infinite
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amount of waiting room. In this model, service durations, including patient stays or provider times, are
considered to have an exponential distribution, and client arrivals are Poissonian [3].

The M/M/s model is still able to produce appropriate estimates of delay even in cases where the actual
coefficient of variation (CV) of service time deviates somewhat from one. TheM/M/smodel, however, may either
overestimate or underestimate actual delays if the CV differs significantly from one. The average delay can be
computed using the M/G/1 system formula, another well-known none-time dependent queue, in such scenarios
involving a Poissonian arrival process with only one server [2].

1.1.�/�/∞ Queueing System and the Computation of the Common Average Time for
Unsaturated Site Visitors Flows Beneath Double-Parking Situations

One of the main causes of traffic congestion on city streets is double parking (DP). DP violations of
industrial trucks whilst they load and dump at transport places with inadequate curbside areas may have huge
poor effects on site visitors. Motivated by the need to examine such effect on urban streets, reference [4] make
use of parking violation facts for New York City in conjunction with discipline facts that have accrued from the
usage of video recording and adopts a complete modelling technique that mixes available facts with varieties of
fashions, as in Figure 1. Another implied approach was the micro-simulation version [4] advanced and calibrated
to examine personal and mixed outcomes of diverse explanatory variables. Reference [4] employed a
macroscopic M/M/∞ queueing version and micro-simulation for estimating common tour time within the
presence of DP activities.

Under uncongested site visitors' situations without downstream blocking off, making use of the M/M/∞
queueing version produced an amazing match with the sphere facts. Overall, the M/M/∞ queueing version is a
powerful technique to compute the common average time for unsaturated site visitor flows beneath DP
situations. Micro-simulation is a greater effective device than the M/M/∞ queueing version for comparing such
congested situations and may be used to study person and mixed outcomes of diverse explanatory variables.

Figure 1. How DP occurs in the sites under investigation [4].

1.2. Application of�/�/∞ Birth-Death Process to Quantitively Interpret theWavelet Dynamics
in Atrial Fibrillation and Phase Singularity

It has been hypothesized that the determined range of PS or wavelets in Atrial Fibrillation (AF) might be
ruled with the aid of using a not unusual set of renewal rate constants �� (for PS or wavelet formation) and ��
(PS or wavelet destruction), with steady-state population dynamics modelled as an M/M/∞ birth-death manner.
It has been demonstrated [5]:

 that λf and λd may be blended in a Markov M/M/∞ manner as it should be a version of the determined
common range and population distribution of PS and wavelets in all structures at unique scales of
mapping; and

 that slowing of the constants denoting rates, namely λf and λd related to slower mixing rates of the M/M/
∞ birth-death matrix, presents an interpretation of spontaneous AF termination. See Figure 2.
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Figure 2. The birth-death process of a transient M/M/∞ queueing system [5].

It is worth mentioning that �� and �� (PS rates of formation and destruction respectively) are related by the
following steady-state equation of theM/M/∞ birth–death [6].

provided that � serves as the average number of PS and wavelets. Additionally, the PS and wavelet
population distribution is characterized by the steady state probability �� [6] of getting a wavelet population or a
phase singularity with size � is determined by:

It has been conjectured by reference [5] that Equation (1) determines the average number of PS and
wavelets, namely �.

� =
��

��
(1)

A strong characterization of the overall dynamics of PS and wavelet population is provided by Equation (2).

�� =
(

��

��
)��−

��
��

�!
(2)

To understand and identify PS and wavelet population dynamics in AF, M/M/∞ birth-death approaches
provide a unique quantitatively expressive architecture. There are opportunities for scientific application
because this conceptual paradigm in reference [7] has been demonstrated to work in a variety of AF studies at
unique scales and mapping densities, as shown by Figure 3.

Figure 3. How a mapped field impacts view size [6].
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1.3. Information Length Theory

Shannon entropy is not the best descriptor [8] of a time series' statistical variations, which has made using
other unique information theoretic notions, including Fisher Information [9–15], highly motivating. By using IL,
the total number of statistical variances for a specified temporal range can be found. Compared to other
information metrics such as differential entropy, IL is preferred because it highlights the evolution path
dependency between two states (PDFs) [16]. Time-dependent probability density functions (PDFs) provide the
ability to trace time series evolution and measure variability [8], which is the basis of the IL metric's
attractiveness.

Mathematically speaking, if � serves as a nth-order stochastic variable and �(�, �) is a time-dependent PDF
of �, then the Information Length ℒ(�) corresponding to its evolution from the initial time �0 = 0 to the final time
�� = � is devised by Equation (3).

ℒ � =
0

� ��1

�(�1)
=

0

�
(�(�1))��1�� (3)

The mathematical notation of � �1 is prescribed by Equation (4):

� �1 = ∫ℝ�
1

�(�, �1)
[
��(�, �1)

��1
]2 �� (4)

provided that �(�) serves as the root-mean-squared fluctuating energy rate.
It is essential to note that �(�) serves as a dynamic temporal unit which provides the correlation time over

which the changes of � �, � take place [16]. Furthermore, �(�) defines the statistical space's time unit. Having
said that, � � = 1

�(�)
, quantifies the information velocity [17].

Additionally, IL's formalism introduces a fascinating connection between information geometry and
stochastic processes [18]. More interestingly, IL has numerous applications for quantum, fluid, and biological
processes [17]. On the other hand, the IL metric was the real motivation behind the provision of a novel info-
geometric measure of casual information rate [19]. Its effects on the creation of entropy or free energy in the non
-autonomous Ornstein-Uhlenbeck process highlight the significance of IL for stochastic thermodynamics [20]. In
conclusion, references [21–23] provide an examination of the interval learning (IL) computation of linear
stochastic autonomous processes. This broadens the scope of application, enabling IL to be used for the
abruption of event prediction and facilitating application to different engineering contexts.

1.4. IL as a Concept

It is preferable to compute the underlying value of the mathematical model of the related physical process
to comprehend the meaning of ℒ . Taking the Langevin-equation-described first-order stochastic process into
consideration, as portrayed by Equation (5):

��
��

=− � � � − � � + � (5)

provided that � serves as a random variable, � defines a deterministic force, � represents a short-correlated
random force satisfying Equation (6):

< � � � �1 >= 2� � � − �1 and < � � >= 0 (6)

where � serves as the amplitude (temperature) of the deterministic force (stochastic nose) �.
It is to be noted that is so popular to be used as a descriptor of the motion of a particle under a harmonic

potential in the form of Equation (7):

� � =
1
2

�(� − �(�))2 (7)

Following references [23,24], it is found that Equation (8) determines another form of � � to read as:
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� � =
(

��
��

)2

2�2 + 2�(
��
�� )2 (8)

� �, � =
�
��−(�(�−�))2 , � � =< � >= � 0 �−�(�) + �(�)

Such as the parameter �(�) is equationally determined by Equation (9):

1
2�(�)

=< (� � − � � )2 >=
0

�
2� �−2(� � −� �1 )��1�

� � =
0

�
�− � � −� �1 � �1 �(�1)��1�

(9)

provided that � � = 0
� 2� �(�'∫ )��'.

Clearly, � � is dependent on the changes in both mean and variance defined by the corresponding
visualized dynamics, portraying � �, � three-dimensional space variations, namely
�, �, � �, � as in Figure 4, where the variation of the information velocity, � � would occur along the path
starting initially from the state probability density function �(�, �0) to the final state at �(�, ��) as a descriptor of
the speed limit from the statistical deviations of the observables [16], please see Figure 4.

Figure 4. A graph depicting the evolution of �(�, �) over time � . ℒ(�) computes the total amount of statistical
changes on �(�, �) from �0 to �� [8].

Fundamentally, employing differential entropy [12], may not enable us to observe the occurring temporal
statistical variations. This is a direct implication of the locality's deficiency since differential entropy is mainly for
the quantification of the differences between any two given PDFs disregarding any intermediate states [17]. In a
different symbolism, it only notifies us of the differences that have an influence on the underlying system's
general development. IL ℒ � , on the other hand, measures any localized changes that occur along the system's
course [14,17]. More crucially, IL has been touted as a cutting-edge technique for depicting an attractor structure
and as a potent metric that can unite geometry and stochasticity [20,21]. From the point of stable equilibrium,
the equivalent value of lim�→∞ ℒ(�) would grow linearly depending on where the starting state's mean PDF
�(�, 0) is located [15,24]. Notably, this strongly underlines that IL preserves the underlying Gaussian process'
linear geometry. More importantly, this particular property is lost when employing any other information metric
[17,20]. By using definition, this emphasizes that IL is a one-dimensional and model-free measure. Since IL is
independent of data type, it may be devised by calculating the time series' time-variant PDF [8].
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The research ideas of this paper are as follows: a spotlight introduction is presented in Section 1; the
groundbreaking findings are established in Section 2; some challenging open problems, conclusion, and future
research work are given in Section 3.

The groundbreaking findings of this paper are threefold:
 An exposition of a significant real-life application of M/M/∞ queueing system was addressed, namely the
computation of the common average time for unsaturated site visitor flows beneath double-parking
situations.

 The significant impact of both time and the number of states for the transient M/M/∞ queue on both the
upper and lower bounds of the obtained information data length is observed and noted.

 The practical implication for the field includes the provision of some challenging open problems, which
would open a plethora of several gates to the establishment of contemporary information data length
theory of transient queueing systems combined with concluding remarks and future research pathways.

2. The Upper and Lower Bounds of the Data Information Length of Transient�/�/∞
Queuing System

In this section, an exposition of a novel link between Information Length Theory (ILT) and Transient
Queueing Systems (TQSs) is undertaken by deriving both upper and lower bounds of the data information length
of a transient M/M/∞ queuing system. In this context, it is revealed that if �(�) serves as the time-dependent
server utilization of the transient M/M/∞ queuing system, then the latter obtained upper and lower bounds
(�� �, � , ��(�, �)) respectively) are both (�, � � ) -dependent, � = 0, 1, 2, … . Additionally, a typical numerical
experiment is conjectured to illustrate the significant impact of time on behaviour of the devised
�� �, � and �� �, � for different values of �.

2.1. The Poisson Process

One of the most popular counting [25] methods is the Poisson process. It is typically employed in situations
when we are counting the occurrences of specific events that seem to occur at a certain rate but are completely
random (without a certain structure). For instance, if we know from past data that there are two earthquakes
that happen in a specific region every month and the timing of earthquakes appears to be completely random
except for this information, we draw the conclusion that the Poisson process may serve as a useful earthquake
model. Models have:

 Photons arriving on a photodiode.
 The quantity of auto accidents at a location or in a region.
 The position of users in a wireless network.
 Requests for certain publications on a web server.
 The start of conflicts.
A random process is called Poisson process [25] with the rate � if it satisfies the following definition:
For a fixed � > 0, � ∈ 0, ∞ , we define a counting process to be Poissonian with rates � when it satisfies the

following:
 � 0 = 0.
 The underlying increments of � � are independent.
 Within any interval with a length � > 0 , the associated number of arrivals must follow a Poissonian (��)
distribution.

Specifically, if Equation (10) holds:

�� = �=1
� ��� , �� ∼ Gamma �, � (10)

provided that ��'� serve as randomized independent variables satisfying ����������� (�) variables. Then,
following Equation (11), one gets:

� �� =
1
� (11)

On the other hand, the variance of �� is governed by Equation (12):
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��� �� =
1
�2 (12)

This provides a simulation approach for a Poissonian process of a rate �. We start with the generated �� ∼
����������� � to obtain the corresponding service times, as in Equation (13):

�1 = �1 (13)

Equation (14) computes �2:

�2 = �1 + �2 (14)

wheras, Equation (15) governs �3:

�3 = �1 + �2 + �3 (15)

2.2. The Transient�/�/∞ Queue and IL

The M/M/∞ queue [26] is a multi-server queueing model used in queueing theory, an emerging applied
probabilistic discipline, with instant service-no wait arrival, as demonstrated by Figure 5. According to
references [27,28], the Poisson distributed service time with mean � and mean arrival rate i� � in the M/M/∞
queueing system's transient probability, which is given by Equation (16):

�� � =
[
�
�

(1 − �−��)]�

�! exp { −
�
�

1 − �−��) , � = 0,1,2, … (16)

Notably, as � → ∞, �� � converges to the limiting value denoted by Equation (17):

�� =
��

�!
�−�, � = 0,1,2, … (17)

where � serves as the server utilization of the underlying queue.

Figure 5. The state space diagram for theM/M/∞ chain.

Recalling that the information length (IL) is defined to follow Equation (18):

ℒ � =
0

� ��1

�(�1)
=

0

�
�(�1

1
2��1�� (18)

Specifically, � �1 is given by Equation (19):

� �1 = ∫ℝ�
1

�(�, �1)
[
��(�, �1)

��1
]2 �� (19)

If ℒM/M/∞ serves as the IL of the transient M/M/∞ queuing system, then the following theorems are devoted
to the derivation of the lower and upper bounds of ℒM/M/∞, namely �� �, � , �� �, � respectively.

Theorem 1
The IL of the transient M/M/∞ queuing system , ℒM/M/∞ satisfies the following inequality defined by

Equation (20):

2(� + 1)(�(�))
3
2

3 �!
1
2

> ℒM/M/∞(�) >
���

2��!
0

�

���−� �� �.(�) �(�) ��� (20)
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Proof
We have Equation (21) that masters �� �, � ,

�� �, � =
[
λ
�

(1 − �−��)]�

�! ��� { −
�
�

1 − �−��) (21)

In another equational format, �� �, � cana follow Equation 22 to read as:

�� �, � =
��

�!
�−�, � � =

�
�

1 − �−�� = � � 1 − �−�� since � � =
� �

� (22)

By the definition, we have � > 0, which implies that �−�� < 1. Hence, � � < � � follows. Then, we have the
real number � ∈(0,1) satisfying Equation (23):

� � = �� � (23)

Consequently, by Equation (24),

��� �
�� =

���−1�.(�)
�! �−� � − � (24)

This implies by Equation 25 ,

��� �, �
��

2

�� �, �
=

���−1�. �
�!

�−� � − �

2

��

�! �−�

= �2��−2�.2(�)
�!

�−� � − � 2

= �2��−2�.2 �
�!

�−� �2 − 2�� + �2

≤ ( �2�.2 �
�!

)(�2 + 1) (Since, �−� ≤ 1, � ∈ (0,1))

< ( �.2 �
�!

)(�2 + 1) (Since � ∈ (0,1))

(25)

Hence, it follows by Equation (26), that:

ℒM/M/∞ <
0

�

(∫
� + 1 2�.2 �

�!
��)

1
2

� ��

= (�+1)
√�! 0

� (∫��∫ )
1
2 �.(�)��

= (�+1)
√�! 0

� (�
1
2)∫ )�.(�)��

= �+1
�! 0

� �
�

1 − �−�� �. � ��∫

< (�+1)
√�! 0

� � �
1
2�.(�)��∫ (Since �−�� ∈ (0,1) = 2(�+1)(�(�))

3
2

3 �!
1
2

)

(26)

On the other hand, by � < � � and � < 1, we have by Equation (27),

��� �, �
��

2

�� �, � =
�2��−2�.2 �

�! �−� � − � 2 (27)
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> �−2� �2��−2�.2 �
�!

� − 1 2

> �−2� � �2�2�−1�.2 �
�!

� − 1 2

> �2�−2�(�)�.2(�) �2�−1

(�!)2 � − 1 2

Thus, it follows by Equation (28) that:

∫

��� �, �
��

2

�� �, �
�� > [∫�2�−2� � �.2(�)

�2�−1

�! 2 � − 1 2]�� > ��.(�)�−� � ��

�! (28)

Hence, Equation (29) reads:

ℒM/M/∞(�) >
�
�!

0

�

�. � �−� �� � � 1 − �−�� ���

> �
�! 0

� �−� �∫ (Since, 1 − �−�� > ��
2

29 )

= ���

2��! 0
� ���−� �∫ �.(�) �(�) ���

(29)

Therefore Equation (30) reads:

2(� + 1)(�(�))
3
2

3 �!
1
2

> ℒM/M/∞(�) >
���

2��!
0

�

���−� �� �.(�) �(�) ��� (30)

In what follows, an illustration of the temporal impact as well as the potential impact of � on the behaviour
of both �� �, � and ��(�, �), as given by Equation (31):

�� �, � = 2(�+1)(�(�))
3
2

3√�!
, �� �, � = ���

2��! 0
� ���−� �∫ �.(�) �(�) ��� (31)

2.3. Numerical Experiments

By choosing � = 1
2
, � � = 1

�
, � =2, it can be easily verified that these proposed choices �� �, � and �� �, �

as defined by Equation (32):

�� �, � =
2(� + 1)

3 �
3
2√(�! )

, �� �, � = −
1

2(�! )
0

�

�−1
��

1
�2 �� = −

�−1
�

2(�! ) (32)

It is clear in Figure 6 that because of the progressive increase of time, �� �, � are decreasing functions in
time. Moreover, for each recorded value of time, by increasing the value of �, �� �, � , � = 0,1,2, … . are
increasing functions. More interestingly, this reveals that �� �, � acts as decreasing function in time and an
increasing function with respect to �. Fundamentally, the increase of time and �impacts �� �, � to depict longer
heavy tails. This translates to seeing the longest heavy tails for �� 2, � , and these tails become shorter for
�� 1, � and the shortest would be for �� 0, � .



Journal of Intelligent Communication | Volume 3 | Issue 2

72

Figure 6. Significant impact of time and n on ��(�, �).

In Figure 7, ��(�, �) is decreasing in time and increasing as � increases. More potentially, the graph
representation of ��(�, �) produces shorter heavy tails by the increase of time and �. This shows a complete
converse scenario in comparison with the recorded heavy tails phenomena in ��(�, �).

Figure 7. Significant impact of time and n on ��(�, �).

In mathematical terms, as time becomes sufficiently large (� → ∞), it follows by Equation (33), that:

lim�→∞�� �, � = lim�→∞
2 �+1

3 �
3
2 �!

= 0 = lim�→∞ − �−1
�

2 �!
= lim�→∞ − 1

2 �! 0
� �−1

�∫ 1
�2 ��

= lim�→∞�� �, �

(33)

Hence, it holds by Equation (34), that as time reaches infinity, � = 0, 1, 2.

lim�→∞ℒ�/�/∞ � = 0 (34)

Notably, it is shown that for M/M/∞ transient queueing system [27–29], as � → ∞ , the correspondent
steady state probability density function, �� is devised by Equation (35):

�� =
��

�!
�−�, � = 0, 1, 2, … (35)
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Since �� does not depend on time, then we have by the definition of IL, that the corresponding stability
phase of M/M/∞ queueing system has an underlying zero information length, that is Equation (36):

lim�→∞ℒM/M/∞ � = 0, � = 0,1,2, M/M/∞ is stable (36)

This provides a strong validation of both obtained mathematical and numerical results. The strategy of the
proof can be extended to the remaining values of � = 3, 4, 5, … , which will show that �� �, � will start to
decrease in both �, � , i.e., the behavioral trend will reverse in terms of the increasability phase in � . More
interestingly, it can be verified that �� �, � will never change its behavioural trend in �, � by being temporarily
decreasing and increasing with the respective increase of �.

In a more detailed account, communicating [30], it could be analytically demonstrated that �� �, � and
�� �, � are both increasing in � and decreasing in � by showing that Equation (37):

��� �,�
��

< 0, ��� �,�
��

> 0 ��� �,�
��

< 0, ��� �,�
��

> 0 (37)

We have by Equation (38),

��� �,�
��

= �
��

2(�+1)

3 �
3
2 (�!)

1
2

=− �+1

�
5
2(�!)

1
2

< 0 for all � > 0 (38)

Additionally, engaging reference [31], the Stirling formula to compute �! is written as a communication in
Equation (39):

�! ∼ (2��)
1
2

�
�

�
, � = 3,4, … (39)

Notably, communicating Equation (40),

��� �,�
��

∼ 2

3 �
3
2(2�)

1
4

�
��

(�+1)

�
�

�
2�

1
2

= 2

3 �
3
2(2�)

1
4

�
��

(�
1
2 + �−1

2) �
�

−�
2

= 2

3 �
3
2(2�)

1
4

1
2
�−1

2 − 1
2

�−3
2

�
�

−�
2 + (�

1
2 + �−1

2) − 1
2

( ln� −1) − 1
2

�
�

−�
2

=
�
�

−�
2

3 �
3
2(2�)

1
4

�−1
2(1 − ln�) − �−3

2 − (�
1
2)ln� < 0, � = 3,4, …

(40)

Additionally, by Equation (41),

��� �,�
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2(�!)�2 < 0 for all � > 0, � = 3,4, … (41)

Additionally, by Equation (42),
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1 + 2�ln� > 0 for all � > 0, � = 3,4, …

(42)

Fundamentally, we have demonstrated with strong supporting mathematical evidence that the undertaken
experiments agree with the analytic proofs.
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3. Concluding Remarks, Open Problems, and Future Research
This paper contributes to the establishment of Information Length Theory of Transient Queueing Systems.

The novel mathematical derivations are undertaken by finding the integral formula of the information length of
the transient M/M/∞ queuing system. Because of the complexity to derive the closed form result of the later
integral formula, both the upper and the lower bounds of that integral, namely �� �, � and ��(�, �) were
derived.

More interestingly, it is observed that �� �, � and ��(�, �) are both (�, � � ) -dependent, � =
0, 1, 2, …, with �(�) to define the time-dependent server utilization of the transient M/M/∞ queuing system.
Moreover, these analytic findings were validated numerically.

Here are some emerging open problems:
 Open Problem One
Is it mathematically feasible to unlock the challenging problem of finding the exact analytic form of ℒ�/�/∞ ,

rather than obtaining its upper and lower bounds? This problem is still open.
 Open Problem Two
Can we extend the undertaken approach to other transient queueing systems, such as the Parthasarathian

transient [32].
 Open Problem Three
Following the obtained key results of the current paper, can we find any other strict upper and lower

bounds for ℒM/M/∞?
Future research pathways include the attempt to solve the proposed open problems and extension of the

information data length theory to explain other fields of human knowledge, such as engineering, physics and
much more.

 Open Problem Four
The last twenty years have seen a rise in the understanding of fractional diffusion, which is characterized by

the fact that diffusion cannot be modelled with a standard Laplacian and that the mean square displacement of
diffusing species does not increase linearly with time, contrary to what Einstein's well-known modelling of
Brownian motion predicted [33]. A lot of emphasis has been paid to fractional subdiffusion, which is defined as
the mean square displacement of a population spreading as a sublinear power law in time because of extensive
observations in biological systems. It is now widely acknowledged that the time-fractional diffusion equation is
the optimal equation for defining subdiffusion if it results from particles being trapped for arbitrarily extended
lengths of time [33]. It has a power law waiting time density and is obtained from a continuous time random
walk (CTRW) [33]. Within this formula, for population density of a species, namely, �(�, �) to read as in Equation
(43):

��(�, �)
��

= 0�
�
1−� �2�(�, �)

��2 , 0 < � < 1 (43)

Which is derivable [34,35] from a continuous time random walk (CTRW) [36] with a power law waiting
time density. In Equation (44),

0�
�
1−�� �, � =

1
�(�)

�
�� 0

� �(�, �')

� − �' 1−�� ��' (44)

Is the Riemann-Liouville fractional derivative of order 1 − � [37].
Possible unified links can be drawn with reaction-subdiffusion systems, based on equal birth and death rate

dynamics, Fisher–Kolmogorov, Petrovsky and Piskunov (Fisher–KPP) equation dynamics, Fitzhugh–Nagumo
equation dynamics, and information data length theory. This challenging open problem would provide
contemporary higher-level applications to information length theory.

 Open Problem Five
Utilizing references [38,39], is it feasible to develop optimization strategies to minimize the information

data length in queueing systems? This is a challenging research question.
 Open Problem Six
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The exposition of sensitivity analysis [40–43] to understand the sensitivity of the information data length to
variations in model parameters is another challenging area to be utilized within the information data length
theory, especially in transient queueing. This is still unexplored until now.

 Open Problem Seven
Under the Poissonian process, is it possible to find some numerical examples for �� with a prescribed

expected value, given by Equation (45):

� �� =
1
� (45)

The variance of �� is governed by Equation (46):

��� �� =
1
�2 (46)

Like that, �1 is provided by Equation (47):

�1 = �1, (47)

Also, �2 is provided by Equation (48):

�2 = �1 + �2, (48)

�3 is provided by Equation (49):

�3 = �1 + �2 + �3, (49)

This is yet another challenging open problem.
The next phase of research includes attempting to solve the provided open problems, as well as extending

this study to include more unsolved cases of transient queueing systems.
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