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Abstract: This paper proposes a multi agent value decomposition network (VDN) based multi UAV collaborative
reconnaissance and control method to address the issue of insufficient strategies for multi UAV collaborative
reconnaissance and control. By designing corresponding algorithm networks and training processes, the goal of
autonomy, collaboration, and intelligence among multiple unmanned aerial vehicle systems has been achieved,
assisting unmanned aerial vehicle combat forces in achieving collaborative operations and decision-making. This
article uses AirSim as the simulation verification environment to verify the effectiveness of the proposed
algorithm. The experimental results show that the algorithm proposed in this paper can achieve multi UAV
collaborative reconnaissance tasks in complex environments, providing an intelligent solution for UAV
collaborative control.
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1. Introduction
With the development of technology, drones can be seen in various aspects of civil and military applications.

Drones have shown excellent performance in aerial photography, distributed positioning, 3D reconstruction, as
well as military early warning, regional search [1], electronic countermeasures [2], etc., completing various tasks
at a lower cost. Drone technology has become one of the core technologies for the development of aviation
industry both domestically and internationally [3]. Drones play a more important role in air combat, not only for
adversarial purposes, but also for reconnaissance, maneuvering tracking, and decision-making games [4]. In
modern warfare, drones have become an indispensable reconnaissance tool on the battlefield. But with the
complexity of warfare and the demand for higher reconnaissance efficiency, single drone systems are no longer
able to meet the needs of complex warfare reconnaissance tasks. However, with the emergence of multi drone
system collaborative control technology, multi drone systems have gradually replaced single drone systems to
take over reconnaissance tasks. Multi drone mission planning technology is a technology for reconnaissance
cooperation among multiple drones. Currently, multi drone collaborative reconnaissance mission planning
technology mainly includes the following two fields according to the different reconnaissance objects: “point-to-
point” collaborative reconnaissance and “point-to-point” collaborative reconnaissance [5,6]. “Point to point”
collaborative reconnaissance refers to unmanned aerial vehicles (UAVs) conducting collaborative
reconnaissance on target points, while “point-to-point” collaborative reconnaissance refers to UAVs conducting
collaborative reconnaissance on large target areas. During the process of target reconnaissance, multiple UAV
systems try to minimize the cost and efficiency of reconnaissance. In addition, in complex battlefield
environments, multiple unmanned aerial vehicle systems need to continuously perceive the environment and
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complete wireless communication and collaborative positioning [7]. At the same time, enemy targets may have
better maneuverability, which places higher demands on the autonomy, collaboration, and intelligence of drone
maneuvering decisions. To complete the collaborative reconnaissance mission of unmanned aerial vehicles, it is
necessary to break through three key technologies: collaborative perception, collaborative task allocation, and
collaborative trajectory planning.

1.1. Collaborative Perception Technology

Collaborative perception technology is an important foundation for drone clusters to complete various
tasks. Drones use perception technology to “understand” the environment, and the core functions of drone
collaborative perception are target detection, recognition, positioning, and tracking [8]. For example, in response
to rejection environments, in order to meet the optimal maneuvering needs of unmanned aerial vehicles in
various mission environments, the Defense Advanced Research Projects Agency (DARPA) of the United States
has proposed intelligent situational awareness and target detection, recognition, and tracking technology based
on aerial vision [9]; Li Congcong et al. studied the applicability of various sensors in the degraded visual
environment and designed the data frame format transmitted by UAV to improve the mutual fusion rate of
images from different sensors [10]. The experimental results show that the mutual fusion image technology
based on the data frame format transmitted by UAV can effectively improve the target recognition ability; The
Merino L team proposed a collaborative perception system suitable for various heterogeneous drone clusters,
which can automatically detect and locate targets [11].

The collaborative perception process can be divided into three stages: information acquisition, information
fusion, and intelligence analysis [12]. In the process of multi drone combat, each drone selects one or more
sensors, such as cameras, radars, etc., based on the battlefield environment to obtain information from the target.
After obtaining the raw data of the target, drones need to process information. Multi drone systems integrate
data and information from multiple sources to obtain accurate location and identity information of the target.
This process is called information fusion, which is a process of refining the obtained information. The multi
drone system uses artificial intelligence and other technologies to perform intelligence analysis on refined data,
interpret the knowledge contained in the data, and complete the collaborative perception process. However,
there are still some unresolved issues, first of which is the inefficient utilization of combined sensor information.
Secondly, there is a lack of collaborative trajectory optimization across multiple platforms. In addition, further
research is needed on efficiency evaluation techniques.

1.2. Collaborative Task Allocation Technology

Multi drone collaborative task allocation is guided by target value, taking into account the number of drones,
flight performance, and types of resources carried, and reasonably allocating the targets to be executed to
multiple drones, achieving reasonable scheduling of combat tasks and optimizing task execution [13].

Currently, many collaborative task allocation methods for unmanned aerial vehicles have been developed.
Traditional algorithms such as branch and bound, dynamic programming, deep search, etc. [14,15], but these
algorithms face problems such as long solving time and difficulty in solving multi constraint tasks when facing large-
scale unmanned aerial vehicle task allocation problems. Therefore, researchers currently mostly use intelligent task
allocation algorithms, such as using the traveling salesman problem solving method to solve the multi drone
collaborative task allocation problem, treating the multi task problem as a multi traveling salesman problem, adding
virtual target locations in the calculation process, and then decomposing the multi traveling salesman problem into
single traveling salesman problems to solve them one by one, ultimately solving the feasible flight paths of each drone
[16]. Kang Xuchao et al. proposed the discrete firefly algorithm to solve the task allocation problem of unmanned aerial
vehicles [17]. By improving the firefly's movement mechanism, the convergence speed of the algorithm was improved,
enabling the drone to quickly reach the target position. Other trajectory planning algorithms such as multi-layer coding
genetic algorithm [18], improved genetic algorithm [19], etc.

1.3. Collaborative Trajectory Planning Technology

In terms of trajectory planning, mainstream methods both domestically and internationally include polygon
region decomposition and efficient convergence algorithms [20], parallel region search methods [21], graphic
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algorithms, and intelligent biomimetic algorithms. Graphics algorithms include A * algorithm [22], RRT algorithm
[23], Voronoi graph algorithm [24], etc. Intelligent biomimetic algorithms include particle swarm optimization
[25], genetic algorithm [26], ant colony algorithm [27], and reinforcement learning algorithm [28,29], among
others. The decomposition based on polygons and efficient convergence methods are also applied to the
trajectory calculation of small-scale heterogeneous drone clusters. Intelligent biomimetic algorithms have
advantages over graphic computing in areas such as global search and parallel evolution, and can even handle
some larger scale problems. In intelligent biomimetic algorithms, particle swarm optimization has the
advantages of fast convergence, good robustness, and high efficiency. When based on particle swarm
optimization, it is easier to combine with other algorithms [30].

In complex reconnaissance environments, drone operators require years of training to master excellent
control capabilities over drones, which invisibly increases the difficulty and efficiency of executing drone flight
missions in complex environments. Throughout the entire mission, each drone will face a complex external
environment that may result in various malfunctions. The reconnaissance and flight decision-making of
unmanned aerial vehicle systems in complex environments will be the focus of future research on unmanned
aerial vehicles. This requires autonomous control technology to control unmanned aerial vehicles, achieve
precise reconnaissance and perception in the environment, and achieve autonomous decision-making in
reconnaissance. In complex environments, drones use image information, position information, and attitude
information collected by sensors to make flight decisions. When the surrounding environment changes, drones
need to identify obstacles, avoid external risks, and continue to complete flight missions [31].

Based on the advantages of using reinforcement learning to handle sequential decision-making problems,
more and more researchers are incorporating reinforcement learning algorithms combined with deep learning
into unmanned aerial vehicle reconnaissance decision-making problems. On the one hand, by enhancing the
interaction between intelligent agents and the environment, unmanned aerial vehicles can perceive the
environment and achieve navigation tasks such as path planning for unmanned systems. On the other hand, for
different task backgrounds and environments, suitable reward functions can be designed as incentive signals for
drone decision-making, helping drones to complete reconnaissance decision-making tasks autonomously
through training. Zhao Yu et al. used deep reinforcement learning algorithms to construct a control model and a
coordination mechanism between drones to control the collaborative flight of multiple fixed wing drones, and
verified the effectiveness of collision avoidance during collaborative flight of multiple fixed wing drones; Fan
Longtao et al. proposed a reinforcement learning method based on attention mechanism [32,33]. Firstly, a task
allocation solution model was constructed through attention mechanism, and then the model was continuously
optimized using reinforcement algorithm to obtain an approximate optimal solution.

At present, there are still shortcomings in the research of multi UAV collaborative reconnaissance and
encirclement decision-making based on deep reinforcement learning:

a. In the process of research on unmanned aerial vehicle (UAV) collaborative reconnaissance decision-
making based on deep reinforcement learning, there is a problem of relatively simple UAV modeling,
which is relatively different from real UAV reconnaissance flight modeling. Most of them are implemented
in two-dimensional space, with small decision action space and low decision-making difficulty.

b. In the research of reconnaissance decision-making, the task scenario is relatively simple, and the analysis
of the perception process, task allocation process, navigation process, etc. in the reconnaissance process
is insufficient. The environment and model are simplified, making it difficult to apply to complex and
dynamic real reconnaissance scenarios.

Based on the above analysis, this paper proposes a cooperative control algorithm for multi UAV
reconnaissance based on dynamic programming reinforcement learning multi-agent value decomposition
networks (VDN) algorithm in complex environment. The tight coupling of drone target allocation tasks and
trajectory planning is more in line with the demand for collaborative reconnaissance decision-making among
multiple drones in complex environments, and is of great significance for realizing future multi-UAV, multi-
manned/UAV collaborative operations and territorial defense.
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2. Modeling of Multi UAV Collaborative Reconnaissance Tasks

2.1. Description of Multi UAV Collaborative Reconnaissance Tasks

The main question of the co-reconnaissance of Drum-Machinery is how to make multiple drones cooperate
with each other to complete the value target reconnaissance tasks in the regional space. In this process, the
drone needs to be decided and shared. To achieve the purpose of collaboration.

When studying from the top of the top to study the co-reconnaissance of the drone, you need to consider the
coordination between each drone system in the multi-drone system. The form of mathematical modeling
describes the interaction between the coordination between drones and the environment to obtain the feasible
solution of the reconnaissance model and meet the requirements of many drones to collaborate with
reconnaissance. As shown in Figure 1, the hierarchical description diagram is described from the top of the top of
the top.

Figure 1. Top-down multi-UAV collaborative reconnaissance mission hierarchical description diagram.

2.2. Analysis of Multi-UAV Cooperative Reconnaissance Mission

2.2.1. UAV Flight Platform

When conducting regional collaborative reconnaissance, the drone that obtains the reconnaissance target
after the reconnaissance mission is assigned needs to fly to the reconnaissance area within a certain period of
time to complete the reconnaissance work. When the drone is not assigned a reconnaissance mission, the drone
maintains the cruising altitude and cruising speed.

2.2.2. Detection Target

In the battlefield, there are two main types according to the value classification, the first is high-value
targets, such as enemy combat command centers, ammunition depots, and cluster targets, and the second is low-
value targets, such as man-portable units, isolated combat vehicles, and so on. In the reconnaissance process, the
UAV may be reconnaissance target counter reconnaissance, in general, the threat level of high-value targets is
higher than that of low-value targets, so the UAV needs to consider the threat level of different value targets in
the process of reconnaissance, to avoid enemy radar counter reconnaissance, and to improve the probability of
survival of its own side in the process of reconnaissance.

2.2.3. Reconnaissance Constraints

In the process of multi-UAV cooperative reconnaissance, only a single UAV can appear on the same spatial
location point at the same moment, and the positional synergy of multiple UAVs in the whole combat space can
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satisfy the requirements of multi-UAV cooperative reconnaissance in order to maximize the spatial utility of the
multi-UAV system, which is known as the spatial constraint. In addition, other constraints, such as the UAV flight
altitude constraint, i.e., the UAV cannot be lower than the flight safety altitude, the on-board sensor detection
range constraint, energy constraints, etc., constitute the control conditions for multi-UAV cooperative
reconnaissance missions.

2.3. Multi-UAV Coordinated Reconnaissance Mission Model

The position of the UAV and the reconnaissance target is defined in the Earth coordinate system �������� ,
which is used to study the process of relative changes in the positions of the UAV and the target. The airframe
system �������� is defined on the UAV airframe, the origin �� is the position of the center of gravity of the UAV;
the ���� direction is the direction pointing to the nose in the plane of symmetry of the UAV; the ����and����
axes are in the same plane perpendicularly ���� downward, and the ���� axis is determined according to the
right-hand rule. The relationship between the Earth coordinate system and the airframe coordinate system is
illustrated in Figure 2.

Figure 2. Relationship between the Earth coordinate system and the body coordinate system.

The multi-UAV cooperative reconnaissance process assumes that there are N UAVs and M reconnaissance
targets, and there is a formal description of the reconnaissance target ��, � ∈ � for UAV ��, � ∈ � , as shown in
Equation (1).

�� = ��, ��, �, �, �, ��, �� (1)

where, in the above equation, ��, ��denotes the Earth coordinate system velocity and acceleration of the UAV ��,
respectively, �, �, � denotes the roll angle � ∈ −�, � , pitch angle. � ∈ − � 2 , � 2 ., and yaw angle� ∈ −�, � ,
�� denotes the Earth coordinate system position of the UAV, and �� denotes the inter-aircraft datalink
communication data.

The description of the reconnaissance target is shown in Equation (2).

�� = ��, �� (2)

where, in the above equation, ��, �� denotes the target �� Earth coordinate system velocity and position,
respectively.

2.3.1. Flight Control Model

1. Physical modeling of drones
For computational convenience, the UAV model is considered as a rigid body with motor control inputs

{�1, �2, �3, �4}, and the force {�1, �2, �3, �4} and torque {�1, �2, �3, �4} at the rotor vertices are generated according
to the direction normal to its plane of rotation. As the physical model of the UAV shown in the body coordinate
system in Figure 2, The tension and torque generated by each rotor of the drone can be calculated according to
Equation (3).
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�� = �����max
2 ����

4 ��

�� =
1
2�

������max
2 ����

5 ��
(3)

where ��� and ���� are the thrust and power coefficients, respectively, � is the air density, ���� is the propeller
diameter, and �max is the maximum angular velocity per minute, � ∈ 1,2,3,4 .

In order to solve the position and attitude information of the UAV in real time, this paper adopts the UAV
flight control rigid body model, which includes the UAV kinematics and dynamics model.

2. UAV kinematic modeling
UAV kinematics model: including position kinematics model and attitude kinematics model, by inputting the

values of velocity and angular velocity, the UAV kinematics model can solve the position and attitude of the UAV.
The position coordinate of the center of gravity of the drone iU in the Earth coordinate system is P� ∈ R3 ,

and the kinematic model of the drone's position is shown in the following Equation (4).

�� � = �� (4)

The UAV attitude kinematics is shown in the following Equation (5).

ℎ� 0 =−
1
2
� '�ω�

�� � =
1
2
(�0�3��)ω�

(5)

where ω� ∈ R3is the angular velocity. ℎ0 ∈ R is the scalar part of the UAV quaternion, h� ∈ R3is the vector part
of the UAV quaternion, and h '�denotes its transpose matrix.

3. Drone dynamics modeling
The UAV position dynamics model is shown in the following Equation (6).

�� � = ��� −
�
���3 (6)

where � denotes the mass of the UAV, F denotes the magnitude of the total propeller tension, � is the
gravitational acceleration. R ∈ R3×3 is the transformation matrix from the airframe coordinate system to the
Earth coordinate system.

The attitude dynamics model of unmanned aerial vehicles in the aircraft system is shown in the following
Equation (7).

� ∙ �� � =−�� × (� ⋅ ��) + G� + � (7)

where, � ≜ [��� ��� ���]' ∈ R3 represents the rotor torque of the drone. � ∈ R3 is the rotational inertia of the
drone itself. G� ≜ [G�,� G�,� G�,�]' ∈ R3 represents the gyroscopic moment.

Combined, the above lead to the following rigid body model for UAV flight control, as shown in Equation (8).

�� � = ��

�� � = ��� −
�
�
��3

ℎ� 0 =−
1
2
� '�ω�

�� � =
1
2
(�0�3��)ω�

� ∙ �� � =− �� × (� ⋅ ��) + G� + �

(8)

2.3.2. Airborne Sensor Model

UAVs acquire information and localize targets through the sensors they carry, and the performance of the
sensors is the basis for UAVs to carry out reconnaissance missions. When the image sensor carried by the drone
captures a square reconnaissance area, its field of view width is shown in Equation (9).

��� = 2�ℎ�tan(�/2) (9)
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where � is the reconnaissance angle and �ℎ� is the flight altitude in the Earth coordinate system, as shown in the

UAV image sensor reconnaissance schematic shown in Figure 3.

Figure 3. Schematic of drone image sensor reconnaissance.

In addition, a set of distance sensors are used in this paper to help the UAV detect possible obstacle threats
within a certain range around it. Specific UAV detection information is described in subsequent sections.

2.3.3. Flight Trajectory Calculation Model

Defaulting to point target reconnaissance, a single UAV accomplishes the reconnaissance mission with two
main components:

Trajectory distance to the target: when calculating the length of the segment, the safety and feasibility of the
UAV flight process should be fully considered, common threats such as missiles launched by the enemy, enemy
radar scanning, so the UAV is not flying in a straight line, and need to go around the bends, then the segment of
the trajectory distance �

����
�

� is shown in the following Equation (10).

�
����

�
� =

���
�

�
��
�

�

�0� + ��� ⋅ � ��� (10)

where, �
��
�

� , ���
� denotes the moment when UAV �� reconnoiters the target �� and the moment when it takes off

from the starting point �� , respectively, and �0� , ��� denotes the initial speed when UAV �� takes off and the
acceleration at the moment �, respectively.

Returning trajectory distance: the trajectory length of the segment is recorded as �
��
��'�

� , the UAV ��

reconnaissance target �� end position to return, the same method of calculating the length of the trajectory to
arrive at the target, as shown in Equation (11).

�
��
��� �

� =
�
��
�
�

��� �
�

�� 0� + ��� ⋅ � ��� (11)

As a result, the total trajectory length ���
�� for the UAV �� to accomplish the reconnaissance mission to the

target can be expressed as Equation (12).

���
�� = �

����
�

� +�
��
��� �

� (12)

2.3.4. Reconnaissance Tasking Model

In this paper, high-value targets and low-value targets in the reconnaissance environment are abstracted as
point targets, and UAV clusters detect the target location by covering the reconnaissance mission area with
scanning and searching. In the reconnaissance process, in order to maximize the combat effectiveness and
complete the detection and strike integrated combat mission, it is necessary for the UAV to move toward the high
-value target, but due to the limitation of UAV resources, usually a single UAV cannot complete the detection and
strike mission of the high-value target, and in terms of the overall situation of the combat, the low-value target
also needs to be reconnaissance and strike. Therefore, in the multi-UAV reconnaissance task allocation, it is
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necessary to reasonably allocate single or multiple UAVs to simultaneously accomplish the detection and strike
tasks for low-value and high-value targets under a certain number of UAVs. In order to highlight the performance
of the proposed algorithm for real-time task assignment and obstacle avoidance for UAVs, the reconnaissance
targets are set as static or low-slow speed targets in this paper. In addition, a target-oriented mechanism is used
in the reconnaissance process to improve the efficiency of reconnaissance search.

Multi-UAV coordinated reconnaissance mission allocation needs to achieve two purposes, namely, to
minimize the cost of a single UAV and maximize the benefit of a multi-UAV cluster, so as to achieve an overall
allocation, complete coordinated reconnaissance of high-value and low-value targets, and improve the efficiency
of mission execution.

The UAV reconnaissance gain consists of two parts. The first is the reconnaissance target gain, when the
target �� appears in the field of view of UAV �� , it is regarded as reconnaissance of the target �� , then the matrix
element ���

�� in the target reconnaissance gain matrix ��� is shown in the following Equation (13).

���
�� = 1 �� ���

� ∈ {��� , ��� }
0, ����

(13)

where ���
� denotes the target �� position and ��� is the field of view width of the UAV ��.

Next is the reconnaissance area gain, UAV �� in the process of reconnaissance target in collaboration with
other teammates UAV as much as possible with less repetitive trajectory reconnaissance to more areas,
reconnaissance area gain matrix for ��� , then the total gain matrix is shown in the following Equation (14).

�� = ��� + ��� (14)

A single UAV pays an energy cost during reconnaissance, the cost matrix is �� , as shown in the following
Equation (15).

�� =
��1
�1 ⋯ ���

�1

⋮ ⋱ ⋮
��1
�� ⋯ ���

��
(15)

Then the task assignment optimization model can be defined as the maximum indicator function � x,y , i.e.,
making the reconnaissance gain y optimal with x as the constraint, then the system task assignment optimization
model �∗ , as shown in the following Equation (16).

�∗ �, � = argmax
�

min
�
� �� , �� (16)

3. VDN Based Collaborative Reconnaissance Algorithm for Multiple UAV

3.1. VDN Algorithm

VDN is a multi-agent reinforcement learning algorithm based on Deep Q-learning Network (DQN) [34],
which automatically decomposes complex learning problems into local and easier to learn subproblems. It
adopts the CTDE architecture and solves the false reward problem and lazy agent problem in multi-agent
reinforcement learning through a value function-based method. These two problems are essentially credit
assignment problems.

The core of this value function is to approximately decompose the team joint �value function ��(ℎ, �) into
the sum of the sub functions �� of �agents, and the sub functions �� serve as the basis for each agent to execute
actions, as shown in Equation (17).
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��� ℎ, � = ��� ℎ1, ⋯ℎ�, ⋯ℎ� ， �1, ⋯��, ⋯�� = ��
�=0

∞

���(��, ��)� |�0 = �，�0 = �

= ��
�=0

∞

���1(��1, ��1)� |�0 = �，�0 = � + ,⋯, + ��
�=0

∞

����(���, ���)� |�0 = �，�0 = �

= : �1
� �, � + ,⋯, ��

� �, � + , ⋯, + ��
� �, � ≈ �1

� ℎ1, �1 + ,⋯, ��
� ℎ�, �� + ,⋯, + ��

� ℎ�, ��

≈
�=1

�

��
�� ℎ�, ��

(17)

Among them, �, � is the joint state and joint action of the system, ℎ�is the historical sequence information of
the drone intelligent agent �, including observation information and other additional information, �� is its action,
and ��is its observation value of the environment. The VDN network structure is shown in Figure 4.

Figure 4. VDN network structure.

VDN uses a backpropagation mechanism to decompose the joint reward signal onto various agents, and
then iterates the reward value to fit the joint � value, learning the optimal linear value decomposition. During
the training process of VDN, a parameter sharing mechanism is used to further solve the problem of lazy agents.
An end-to-end training method is adopted. In the system, agent � obtains the observation value �� through a local
observation environment at time � combines it with the previous action ��−1� to obtain �� value, and selects the
action ��� according to the greedy strategy to generate a decentralized strategy �� . Then, using the �value update
rule of DQN, �(�, �|�) is replaced with ��(�, �), the joint �� value TD error function ��(�) is calculated, and then the
error is backpropagated to each sub � function to learn the optimal strategy, and the network parameters are
updated by minimizing the error function, as shown in the following Equations (18) and (19).

��(�) = �
ℎ�� ,��� ,��� ,��+1

�
�� ��, �� − ���

2
(18)

��� = ���+1 + �max
��+1

�� ��+1, ��+1|�' (19)

Among them, ℎ�, ��, ��, ℎ�+1 represents the system � time joint historical sequence information, joint action,
joint reward, and �+1time sequence information. ���represents the joint target value.

At the same time, optimize the current value network based on the minimization strategy gradient. The
gradient optimization of value networks can be expressed as shown in the following Equation (20).

���� � = �
ℎ�� ,��� ,��� ,��+1

�
�� ℎ�, �� − ��� ���� ℎ�, �� (20)

Like the DQN algorithm, the VDN algorithm also adopts a soft update strategy to update each target network.
For the target network of agent, its update method is represented, as shown in the following Equation (21).
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�� = ��� + (1 − �)��� (21)

Among them, � represents the agent number, and is the soft update coefficient.
The process of multi drone collaborative reconnaissance algorithm based on VDN is shown in Figure 5. In

the training process of a multi drone collaborative reconnaissance model based on VDN, each drone agent
interacts with the environment, takes actions based on the observation values obtained, and obtains reward
values and the next moment observation values. After all intelligent agents execute decisions, all experience
samples [ℎ, {��, � ∈ �}, {��, � ∈ �}, ℎ']are retained and stored in the experience replay pool for centralized training.
When network updates are required, batchM samples are randomly selected from the experience replay pool in
batches, as shown in the sampling process in Figure 5. During the testing process, after deploying the trained
network model to the drone, each drone agent can execute actions based on the current observation values,
achieving distributed execution of the model.

Figure 5. Schematic diagram of multi drone training based on VDN algorithm.

3.2. Design of Multiple Unmanned Aerial Vehicle Collaborative Reconnaissance Model Based on
VDN Algorithm

3.2.1. Status Space

In the process of multi-agent algorithm training, the reconnaissance drone intelligent agent obtains
environmental observation information and its own state through interaction with the environment. The drone
state space designed in this paper can be represented shown in the following Equation (22).

� = ����, �������, �����, ������, �ℎ������, ������ℎ (22)

Among them, ����� and �������� obtain their own information and observation information of their
teammates for the drone, including position, velocity, and angular velocity.

To meet the resource allocation of reconnaissance drones for high value and low value targets in
reconnaissance missions, there is task information ������ , as shown in the following Equation (23).

������ = 0, ������
1, ������

(23)

Among them, ������ represents that drone i is assigned to the low value target reconnaissance formation,
while ������ represents that it is assigned to the high value target reconnaissance formation.
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In order to observe the environment, an environmental observation status ������� is set up to store distance
information observed by drones, such as targets and obstacles.

In order to avoid UAV reconnaissance of repeated areas in the reconnaissance process, there is
reconnaissance history information state �ℎ������� which is represented by matrix representation, where the
matrix element 1 represents the mark of the position that has been scouted, as shown in the following Equation
(24).

�ℎ������� =

0 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0

(24)

At the same time, in order to assist the drone in effectively completing reconnaissance of the target, the
state variable ������ℎ� is set to indicate whether the reconnaissance information of the target has been completed,
as shown in the following Equation (25).

������ℎ� = 1, ��������� ������
0, ��ℎ�� (25)

3.2.2. Action Space

In the process of simulation experiment, because of the nonlinear characteristics of the kinematics and
dynamics model of the rotor UAV, it is difficult to directly use the unmanned model training to realize the end-to-
end control of reinforcement learning. Therefore, this article adopts a reinforcement learning model scheme for
a single unmanned aerial vehicle, as shown in the schematic diagram of the hierarchical decision-making model
structure in Figure 6.

Figure 6. Schematic diagram of hierarchical maneuvering decision structure.

During the reconnaissance process of drones, when the drones take off, they only move on a certain plane.
Therefore, this article designs the flight actions of drones as shown in Figure 7, and the action space on the
horizontal plane of multiple drone systems is 9 × �.

Figure 7. Unmanned aerial vehicle movement space on the horizontal plane.
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3.2.3. Reward Function

In order to ensure the safe flight of each drone, search the target area and ultimately achieve collaborative
reconnaissance of high value and low value targets. Considering the decision-making processes of task allocation,
area search, maneuvering approach to reconnaissance targets, and autonomous obstacle avoidance in the
collaborative reconnaissance process of multiple unmanned aerial vehicles, a reward function is designed for
each reconnaissance drone individual in the multi drone system as shown in the following Equation (26).

�� = �1 ⋅ ������ +�2 ⋅ ���������� +�3 ⋅ ������� +�4 ⋅ ������� +�5 ⋅ ������ℎ� (26)

During the reconnaissance process, our ground personnel usually provide estimates of the target area
reconnaissance position before dispatching drones to conduct precise reconnaissance, which can improve
reconnaissance efficiency. Therefore, design guidance rewards ������� , as shown in the following Equations (27)
and (28).

������� =
������, ������ > 0

0, ���� (27)

������ = �−
1

10 × �
×

�=1

�

min ��� − �� ��� (28)

Among them, ��� is the location of drone � , �� �� is the estimated center position of the ground report target
� in the area, � is the number of targets in the task environment, and � is the number of high-value targets.
���������� is a target priority reward used to distinguish high and low value goals.

In order to achieve area coverage as much as possible for drones, it is necessary to design a position
continuous reward to drive drones to move towards undetected areas as much as possible, reducing repetitive
flights to previously detected areas. Therefore, the forward speed reward and penalty ������� for drones are set, as
shown in the following Equation (29).

������� ��
��� × 0.03, ����

−0.1, �� ��
�� < 0 ��� ��

�� < 0
(29)

Among them, ��
��� represents the velocity of drone � in the Earth coordinate system ������ plane, and ��

�� , ��
��

is its component. When ��
�� , ��

�� is not both less than 0, the drone receives a positive reward, otherwise it receives
a negative penalty. The drone that receives a positive reward has a speed in the first quadrant of the ������

coordinate system as shown in Figure 8, other quadrants are similar to the first quadrant.

Figure 8. Schematic diagram of obtaining forward speed reward speed.

In order to enable unmanned aerial vehicles to navigate independently and bypass obstacles, design a
reward ������ for safe flight of unmanned aerial vehicles, as shown in the following Equations (30)–(32).
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������ = ����������� +����� (30)

����������� = −5,  ���
��� ≤ ��������� �� ���'

� ≤ 0.1 ⋅ ����� �� ���� ≤ 1
0, ��ℎ��

(31)

����� = −10,  ��� ∉ ��������
0, ��ℎ��

(32)

Among them, ������ consists of collision penalty ����������� and out of bounds penalty ����� . ���
��� represents the

distance between the unmanned aerial vehicle � and the obstacle on the ������ plane in the Earth coordinate
system; ���'

� is the distance between the drone �, �' , which can be obtained from the ���, ��'
� coordinate in the Earth

coordinate system; ���� is the distance between the drone �and the target �. To prevent the reconnaissance target
from counter reconnaissance, when the drone � is too close to the reconnaissance target, it will also receive a
penalty, which is set to−1 in numerical terms.

When the drone detects the target, it will receive a completion reward ������ℎ� . In addition, corresponding
weights �1∼5 will be set for each sub reward to ensure that our reconnaissance drone receives effective reward
rewards. Based on the constructed state input and action output models of reconnaissance drones, and using the
set reward function to complete signal feedback, adaptive state perception and collaborative decision-making
model training of multiple reconnaissance drones can be completed.

4. Experimental Design and Result Analysis

4.1. Network Structure and Parameter Design

The VDN network consists of a current value network, an action value network, and an experience pool. The
action value network inputs the state space of the unmanned aerial vehicle intelligent agent, while the current
value network inputs the output of the action value network and the state information of the unmanned aerial
vehicle intelligent agent. The experience pool stores the relevant information of the intelligent agent during the
training process.

In the algorithm section of this simulation experiment, the hyperparameter settings of IDQN and VDN
algorithms are consistent. In order to ensure the gradient descent of the drone intelligent agent, the network
learning rate is set to 0.01, and it decays once per round as the training progresses. When it decays to 0.0005, the
learning rate no longer decays, and the training continues at this time. In addition, for this task, the maximum
simulation step size for each round is set to 400. When 400 simulation steps are reached or a drone Done is used,
the task for that round will automatically terminate and the environment will be reset for the next round of
training. The other hyperparameters are specifically shown in Table 1.

Table 1. Network training hyperparameter setting.

In the experiment, the parameters of each drone are shown in Table 2.

Parameter Name Parameter Value Parameter Name Parameter Value

Experience Pool Size � 100,000 Training frequency � 1000

Learning rate �� 0.01~0.0005 Sample size ������ 3200

Pre training step size ����� 3200 Maximum number of rounds � 2000

Discount factor � 0.99 Greedy strategy decay rate ���� 0.00001

Greedy strategy minimum ���� 0.1 Maximum value of greedy strategy
����

1.0

Training step size ����� 10,000 Soft update rate � 0.01
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Table 2. UAV training parameters.

4.2. Simulation Experiment and Result Analysis

4.1.1. Design of Simulation Experimental Environment

This article uses the AirSim project Air Learning as the simulation environment to validate the proposed
algorithm. In this experiment, the number of drone intelligent agents is 3, and the environment contains 2
targets with different values and 3 obstacles, as shown in Figure 9a, shows the top view of the environment, and
Figure 9b shows the ambient lighting view [35].

(a) Top view of the environment. (b) Environment lighting view.

Figure 9. Environmental top view and lighting map.

4.1.2. Result Analysis

After 2000 rounds of training, the accumulated reward curve collected by the VDN algorithm is shown in
Figure 10, where the solid line represents the smoothed value and the shadow represents the actual value. In this
environment, the maximum sum of rewards obtained by the VDN algorithm during the training process is 402.8.
After smoothing the reward curve throughout the entire training process, the VDN algorithm's reward curve is
relatively stable and ultimately converges to 362.3.

Parameter Name Parameter Value Parameter Name Parameter Value

Initial speed of drone � �, �, � �/� The cruising speed of unmanned aerial
vehicles �m/�

UAV reconnaissance
perspective � �∘ UAV reconnaissance cruise altitude �~��

Image sensor detection range �~�. �� �� Image sensor field of view width �~�. � �
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Figure 10. The sum curve of rewards obtained by multiple drone collaborations in the environment.

Select a model that has been successfully trained based on the VDN algorithm and load it into the testing
environment. The reconnaissance flight trajectory searched by the sensors carried by the VDN algorithm in the
testing environment is shown in Figure11. In the figure, the purple circle represents the high value target area,
the yellow triangle represents the low target value area, and the black square represents the obstacle position.

As shown in Figure 11, the flight trajectories of three reconnaissance drones were trained using the VDN
algorithm. UAV1, UAV2, and UAV3 took off simultaneously from the reconnaissance starting point. In the first
half of the flight, the three drones flew together. In the second half of the flight, reinforcement learning strategies
were used to assign reconnaissance targets to the drone swarm. Among them, UAV1 is assigned to scout low
value target areas, while UAV2 and UAV3 are synergistically assigned to scout high-value target areas, achieving
effective matching of reconnaissance forces and reconnaissance targets. Additionally, all three drones approach
the estimated target area and identify the target through obstacle avoidance, completing reconnaissance tasks
and improving collaborative reconnaissance efficiency. The three-dimensional trajectory of the drone
demonstrates the effectiveness of the VDN algorithm strategy.

Figure 11. VDN algorithm strategy decision for UAV 3D trajectory in environment.

The velocity and angular velocity curves of the drone in this environment are shown in Figure 12. In Figure
12a, the VDN algorithm's strategy decision for the three drones resulted in sustained positive or negative three-
axis velocities for a period of time, which allowed the drones to maintain forward reconnaissance and reduce
turnaround flights; In Figure 12b, the roll angle, pitch angle, and yaw angle of the three drones in the VDN
algorithm strategy decision vary more frequently within their respective positive and negative axes, indicating
that the flight attitude of the drones is not stable enough.
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(a) UAV three-axis speed. (b) UAV three-axis angular velocity.

Figure 12. UAV speed and angular velocity curves.

From the above experiments, it can be seen that the VDN algorithm has convergence performance during
the training process, and has the characteristics of large search coverage area, fast and safe flight when
implementing reconnaissance flight tasks.

5. Discussion
The VDN algorithm has a simple structure, and the Q value obtained through its decomposition allows

agents to choose greedy actions based on their local observations, thereby executing distributed strategies. Its
centralized training method can to some extent ensure the optimality of the overall Q function. In addition, the
end-to-end training and parameter sharing of VDN make the algorithm converge very quickly. For some simple
tasks, the algorithm can be said to be both fast and effective. The multi UAV collaborative reconnaissance
decision-making method proposed based on this algorithm provides an intelligent solution for future multi UAV
collaborative decision-making applications.

6. Conclusions
This article proposes a multi UAV collaborative reconnaissance method based on multi-agent value

decomposition network (VDN) algorithm to address the shortcomings of multi UAV collaborative reconnaissance
strategies and dynamic planning. Through experiments, it has been verified that this method can effectively
handle complex environments in UAV reconnaissance, achieve task allocation and trajectory planning in
collaborative decision-making, and complete multi UAV collaborative reconnaissance tasks. The contributions of
this paper are as follows:

a. In response to the problem of relatively simple drone modeling and task environment in deep
reinforcement learning based unmanned aerial vehicle (UAV) collaborative reconnaissance process,
which differs significantly from real UAV reconnaissance flight modeling, this study establishes a detailed
multi UAV collaborative reconnaissance task model, including UAV flight control model, airborne sensor
model, flight trajectory calculation model, and reconnaissance task allocation model. And the Airsim
platform, which has a realistic fidelity to the real environment, is used as the simulation environment to
meet the needs of unmanned aerial vehicle autonomous collaborative reconnaissance decision-making in
complex environments.

b. This study adopts the multi-agent reinforcement learning VDN algorithm as the problem-solving method,
which automatically decomposes complex learning problems into local and easier to learn sub problems,
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solves the problems of false rewards and lazy agents in multi-agent reinforcement learning, and promotes
unmanned aerial vehicle intelligent agents to scout unknown environments.

c. This study closely couples drone target allocation tasks with trajectory planning, which is more in line
with the needs of collaborative reconnaissance decision-making among multiple drones in complex
environments.
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