Review

Analysis of the Interaction Effects of Electromagnetic Fields with Major Living Tissues—One Health Concept Numerical Evaluation Strategy

Downloads

Razek, A. (2024). Analysis of the Interaction Effects of Electromagnetic Fields with Major Living Tissues—One Health Concept Numerical Evaluation Strategy. Digital Technologies Research and Applications, 3(2), 41–57. https://doi.org/10.54963/dtra.v3i2.243

Authors

  • Adel Razek
    Group of Electrical Engineering—Paris (GeePs), CNRS, University of Paris-Saclay and Sorbonne University, F91190 Gif sur Yvette, France

The well-being and sociability of individuals have always been part of modernity. The development of new technologies that meet these aspirations is receiving increasing attention. Thus, strengthening the desired objectives of these technologies and minimizing their undesirable side effects is the subject of growing commitment. The present contribution aims, in this context, to evaluate and analyze the desired and undesirable effects of the interaction of electromagnetic fields with living tissues in general. These are routines based on mathematical modeling reinforcing the expected functions as well as those of control and protection against undesirable effects. These adverse effects correspond to the “One Health” concept, which encompasses the health of animals, plants and humans, as well as ecological disorders created by human activity. First, in this article, the interactions of electromagnetic fields with tissues are analyzed, involving their thermal biological effects of desired and undesired exposures. The roles of blood and sap fluids in bio-affected tissues are then analyzed. Secondly, the equations governing electromagnetics and bio-heat, as well as their coupled solution are studied. Third, the thermal behavior of tissues and the adverse effects of exposure are examined. Next, monitoring and defending the effects of exposures are discussed. This contribution, supported by a review of the literature, illustrates routines for mathematical modeling of the generalized interaction of electromagnetic fields with living tissues.

Keywords:

electromagnetic field; living tissues; thermal effects; blood and sap; bio-heat; mathematical models; One Health

References

  1. One Health. Available online: https://www.who.int/europe/initiatives/one-health (accessed on 14 March 2024).
  2. Petroulakis, N.; Mattsson, M.O.; Chatziadam, P.; Simko, M.; Gavrielides, A.; Yiorkas, A.M.; Zeni, O.; Scarfi, M.R.; Soudah, E.; Otin, R. et al. NextGEM: Next-Generation Integrated Sensing and Analytical System for Monitoring and Assessing Radiofrequency Electromagnetic Field Exposure and Health. Int. J. Environ. Res. Public Health 2023, 20, 6085.
  3. Cirimele V.; Freschi F.; Giaccone L.; Pichon L.; Repetto M. Human Exposure Assessment in Dynamic Inductive Power Transfer for Automotive Applications. IEEE Trans. Magn. 2017, 53, 1–4.
  4. Lagorio, S.; Blettner, M.; Baaken, D.; Feychting, M.; Karipidis, K.; Loney T.; Orsini, N.; Röösli, M.; Paulo, M.S.; Elwood, M. The Effect of Exposure to Radiofrequency Fields on Cancer Risk in the General and Working Population: A Protocol for a Systematic Review of Human Observational Studies. Environ. Int. 2021, 157, 106828.
  5. Pophof, B.; Burns, J.; Danker-Hopfe, H.; Dorn, H.; Egblomassé-Roidl, C.; Eggert, T.; Fuks, K.; Henschenmacher, B.; Kuhne, J.; Sauter, C. et al. The Effect of Exposure to Radiofrequency Electromagnetic Fields on Cognitive Performance in Human Experimental Studies: A Protocol for a Systematic Review. Environ. Int. 2021, 157, 106783.
  6. Batool, S.; Bibi, A.; Frezza, F.; Mangini, F. Benefits and Hazards of Electromagnetic Waves, Telecommunication, Physical And Biomedical: a Review. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3121–3128.
  7. Chikha, W.B.; Zhang, Y.; Liu, J.; Wang, S.; Sandeep, S.; Guxens, M.; Veludo, A.F.; Röösli, M.; Joseph, W.; Wiart, J. Assessment of Radio Frequency Electromagnetic Field Exposure Induced by Base Stations in Several Micro-Environments in France. IEEE Access 2024, 12, 21610–21620.
  8. Sivani, S.; Sudarsanam, D. Impacts of Radio-Frequency Electromagnetic Field (Rf-Emf) from Cell Phone Towers and Wireless Devices on Biosystem and Ecosystem—A Review. Biol. Med. 2012, 4, 202–216.
  9. Razek, A. Biological and Medical Disturbances Due to Exposure to Fields Emitted by Electromagnetic Energy Devices—A Review. Energies 2022, 15, 4455.
  10. Razek, A. Thermal Effects of Electromagnetic Origin from Heating Processes to Biological Disturbances due to Field Exposure—A Review. Therm. Sci. Eng. 2023, 6, 20–33.
  11. Ozel, H.B.; Cetin, M.; Sevik, H.; Varol, T.; Isik, B.; Yaman, B. The Effects of Base Station as an Electromagnetic Radiation Source on Flower and Cone Yield and Germination Percentage in Pinus Brutia Ten. Biol. Futur. 2021, 72, 359–65.
  12. Khan, M.D.; Ali, S.; Azizullah, A.; Shuijin, Z. Use of Various Biomarkers to Explore the Effects of Gsm and Gsm-Like Radiations on Flowering Plants. Environ. Sci. Pollut. Res. 2018, 25, 24611–14628.
  13. Tran, N.T.; Jokic, L.; Keller, J.; Geier, J.U.; Kaldenhoff, R. Impacts of Radio-Frequency Electromagnetic Field (Rf-Emf) on Lettuce (Lactuca Sativa)-Evidence for Rf-Emf Interference with Plant Stress Responses. Plants 2023, 12, 1082.
  14. Pawełek, A.; Owusu, S.A.; Cecchetti, D.; Zielińska, A.; Wyszkowska, J. What Evidence Exists of Crop Plants Response to Exposure to Static Magnetic and Electromagnetic Fields? A Systematic Map Protocol. Environ. Evidence 2022, 11, 37.
  15. Ayesha, S.; Abideen, Z.; Haider, G.; Zulfiqar, F.; El-Keblawy, A. et al. Enhancing Sustainable Plant Production and Food Security: Understanding the Mechanisms and Impacts of Electromagnetic Fields. Plant Stress 2023, 9, 100198.
  16. Razek, A. Analysis and Control of Ornamental Plants Responses to Exposure to Electromagnetic Fields. Ornamental Plant Res. 2024, 4, e009.
  17. Razek, A. Assessment of EMF Troubles of Biological and Instrumental Medical Questions and Analysis of Their Compliance with Standards. Standards 2023, 3, 227–239.
  18. Lestari, M.; Sulhadi, S.; Sutikno, S. The Effect of Ornamental Plants on Reducing the Intensity of Electromagnetic Wave Radiation. Phys. Comm. 2023, 7, 35–42.
  19. Mühlbauer, A. History Of Induction Heating and Melting. Vulkan-Verlag GmbH Publications: Essen, Germany, 2008.
  20. Watanabe, T.; Nagaya, S.; Hirano, N.; Fukui, S. Elemental Development of Metal Melting by Electromagnetic Induction Heating Using Superconductor Coils. IEEE Trans. Appl. Supercond. 2016, 26, 1–4.
  21. Biswal, SK; Pal, S. Numerical Investigation of the Dimension Factor of Hairpin Coil for Sustainable Induction Heating. In Recent Advances In Manufacturing Modelling And Optimization: Select Proceedings of RAM 2021; Springer Nature Singapore: Singapore, 2022, pp. 11–19.
  22. Zhu, G.; Liu, X.; Li, L.; Zhu, J. A Novel Nonlinearity Marginalization Technique for Effective Solution of Induction Heating Problems by Cell Method. J. Phys. D: Appl. Phys. 2020, 53, 245502.
  23. Vishnuram, P.; Ramachandiran, G.; Sudhakar Babu, T.; Nastasi, B. Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes. Energies 2021, 14, 6634.
  24. Hu, Q.; He, Y.; Wang, F.; Wu, J.; Ci, Z.; Chen, L.; Xu, R.; Yang, M.; Lin, J.; Han, L. et al. Microwave Technology: A Novel Approach to the Transformation of Natural Metabolites. Chinese Medicine 2021, 16, 87.
  25. Kumar, C.; Karim, M.A. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394.
  26. Sekkak, A.; Pichon, L.; Razek, A. 3-D Fem Magneto-Thermal Analysis in Microwave Ovens. IEEE Trans. Magn. 1994, 30, 3347–3350.
  27. Ge, C.; Duan, B.; Lou, S.; Qian, S.; Wang, W. On Improving Convergence Characterization to Solve the Electromagnetic—Thermal Model. IEEE Trans. Microwave Theory Tech. 2021, 69, 3624–3634.
  28. Rodrigues, D.B.; Ellsworth, J.; Turner, P. Feasibility of Heating Brain Tumors Using a 915 MHz Annular Phased-Array. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 423–427.
  29. Zastrow, E.; Hagness, S.C.; Van Veen, B.D.; Medow, J.E. Time-Multiplexed Beamforming for Noninvasive Microwave Hyperthermia Treatment. IEEE Trans. Biomed. Eng. 2011, 58, 1574–1584.
  30. Redr, J.; Pokorny, T.; Drizdal, T.; Fiser, O.; Brunat, M.; Vrba, J.; Vrba, D. Microwave Hyperthermia of Brain Tumors: A 2D Assessment Parametric Numerical Study. Sensors 2022, 22, 6115.
  31. Rittersdorf, I.M.; Hoff, B.W.; Richardson, A.S.; Martin, S.A.; Yakovlev, V.; Kim, P.; Schumer, J. A 1-D Model for the Millimeter-Wave Absorption and Heating of Dielectric Materials in Power Beaming Applications. IEEE Trans. Plasma Sci. 2021, 49, 695–702.
  32. Sekkak, A.; Kanellopoulos, V.N.; Pichon, L.; Razek, A. A Thermal and Electromagnetic Analysis in Biological Objects Using 3d Finite Elements and Absorbing Boundary Conditions. IEEE Trans. Magn. 1995, 31, 1865–1868.
  33. Bellizzi, G.G.; Drizdal, T.; van Rhoon, G.C.; Crocco, L.; Isernia, T.; Paulides, M.M. The Potential of Constrained SAR Focusing for Hyperthermia Treatment Planning: Analysis for the Head & Neck region. Phys. Med. Biol. 2019, 64, 015013.
  34. International Commission on Non‐Ionizing Radiation Protection. Guide‐Lines for Limiting Exposure to Time‐Varying Electric and Magnetic Fields for Low Frequencies (1 Hz–100 kHz). Health Phys. 2010, 99, 818–836.
  35. International Commission on Non‐Ionizing Radiation Protection. Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524.
  36. IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz," in IEEE Std C95.1-2019 (Revision of IEEE Std C95.1-2005/ Incorporates IEEE Std C95.1-2019/Cor 1-2019) , vol., no., pp.1–312, 4 Oct. 2019. Available online: https://ieeexplore.ieee.org/document/8859679 (accessed on 10 January 2024).
  37. Scientific Evidence for Cell Phone Safety. Available online: https://www.fda.gov/radiation-emitting-products/cell-phones/scientific-evidence-cell-phone-safety (accessed on 4 January 2024).
  38. 1999/519/EC: Council Recommendation of 12 July 1999 on the Limitation of Exposure of the General Public to Electromagnetic Fields (0 Hz to 300 GHz). Available online: https://eur-lex.europa.eu/eli/reco/1999/519/oj (accessed on 4 January 2024).
  39. Feychting, M.; Ahlbom, A.; Kheifets, L. EMF and Health. Annu. Rev. Public Health 2005, 26, 165–189.
  40. Huang, P.C.; Cheng, M.T.; Guo, H.R. Representative Survey on Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields in Taiwan and Comparison with the International Literature. Environ. Health 2018, 17, 5.
  41. Advocacy for a Cognitive Approach to Electro Hypersensitivity Syndrome. Available online: https://www.researchgate.net/publication/339794948 (accessed on 4 January 2024).
  42. Baliatsas, C.; Van Kamp, I.; Lebret, E.; Rubin, G.J. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields (Iei-Emf): a Systematic Review of Identifying Criteria. BMC Public Health 2012, 12, 643.
  43. Rubin, G.J.; Nieto-Hernandez, R.; Wessely, S. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields (Formerly ‘Electromagnetic Hypersensitivity’): An Updated Systematic Review of Provocation Studies. Bio. Electromagn. 2010, 31, 1–11.
  44. Huang, P.C.; Chiang, J.C.; Cheng, Y.Y.; Cheng, T.-J.; Huang, C.-Y.; Chuang, Y.-T.; Hsu, T.; Guo, H.-R. Physiological Changes and Symptoms Associated with Short-Term Exposure to Electromagnetic Fields: a Randomized Crossover Provocation Study. Environ. Health 2022, 21, 31.
  45. Genuis, S.J.; Lipp, C.T. Electromagnetic Hypersensitivity: Fact or fiction? Sci. Total Environ. 2012, 414, 103–112.
  46. Barth, A.; Ponocny, I.; Gnambs, T.; Winker, R. No Effects of Short-Term Exposure to Mobile Phone Electromagnetic Fields on Human Cognitive Performance: a Meta-Analysis. Bioelectromagnetics 2012, 33, 159–165.
  47. Curcio, G. Exposure to Mobile Phone-Emitted Electromagnetic Fields and Human Attention: No Evidence of a Causal Relationship. Front. Public Health 2018, 6, 42.
  48. Valentini, E.; Ferrara, M.; Presaghi, F.; De Gennaro, L.; Curcio, G. Systematic Review and Meta-Analysis of Psychomotor Effects of Mobile Phone Electromagnetic Fields. Occup. Environ. Med. 2010, 67, 708–716.
  49. Sunstein, C.R. Beyond the Precautionary Principle. Univ. Pa Law Rev. 2003, 151, 1003–1058.
  50. Ramos, V.; Suarez, O.J.; Febles-Santana, V.M.; Suarez-Rodriguez, D.S.; Aguirre, E.; De-Miguel-Bilbao, S.; Marina, P.; Rabassa-Lopez-Calleja, L.E.; Celaya-Echarri, M.; Falcone, F. et al. Electromagnetic Characterization of UHF-RFID Fixed Reader in Healthcare Centers Related to the Personal and Labor Health. IEEE Access 2022, 10, 28614–28630.
  51. Kim, J.H.; Lee, J.K.; Kim, H.G.; Kim, K.B.; Kim, H.R. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol. Ther. 2019, 27, 265–275.
  52. Scientific Committee on Emerging and Newly Identified Health Risks. Opinion on Potential Health Effects of Exposure to Electromagnetic Fields (EMF); European Commission: Luxembourg, 2015. Available online: https://health.ec.europa.eu/document/download/059a98d2-07fa-4575-b4a0-ba9f6c4391e0_en?filename=scenihr_o_041.pdf (accessed on 10 January 2024).
  53. Sánchez-Hernández, D.A. High Frequency Electromagnetic Dosimetry; Artech House, Inc.: Norwood, MA, USA, 2009.
  54. Wust, P.; Kortüm, B.; Strauss, U.; Nadobny, J.; Zschaeck, S.; Beck, M.; Stein, U.; Ghadjar, P. Non-Thermal Effects of Radiofrequency Electromagnetic Fields. Sci. Rep. 2020, 10, 13488.
  55. Zradzi ´nski, P.; Karpowicz, J.; Gryz, K. Electromagnetic Energy Absorption in a Head Approaching a Radiofrequency Identification (Rfid) Reader Operating at 13.56 Mhz in Users of Hearing Implants Versus Non-Users. Sensors 2019, 19, 3724.
  56. Jalilian, H.; Eeftens, M.; Ziaei, M.; Röösli, M. Public Exposure to Radiofrequency Electromagnetic Fields in Everyday Microenvironments: An Updated Systematic Review for Europe. Environ. Res. 2019, 176, 108517.
  57. Leach, V.; Weller, S.; Redmayne, M. A Novel Database of Bio-Effects from Non-Ionizing Radiation. Rev. Environ. Health 2018, 33, 273–280.
  58. Dürrenberger, G.; Fröhlich, J.; Röösli, M.; Mattsson, M.O. EMF Monitoring—Concepts, Activities, Gaps and Options. Int. J. Environ. Res. Public Health 2014, 11, 9460–9479.
  59. Röösli, M.; Frei, P.; Bolte, J.; Neubauer, G.; Cardis, E.; Feychting, M.; Gajsek, P.; Heinrich, S.; Joseph, W.; Mann, S. et al. Conduct of a Personal Radiofrequency Electromagnetic Field Measurement Study: Proposed Study Protocol. Environ. Health 2010, 9, 9–23.
  60. Review of Published Literature between 2008 and 2018 of Relevance to Radiofrequency Radiation and Cancer. Available online: https://www.fda.gov/media/135043/download (accessed on 18 February 2024).
  61. Cancer Research for Cancer Prevention. Available online: https://www.aws.iarc.who.int/featured-news/new-world-cancer-report/ (accessed on 11 January 2023).
  62. Maxwell, JC. VIII. A Dynamical Theory of the Electromagnetic Field. Philos. Trans. Royal Soc. 1865, 155, 459–512.
  63. Pennes, H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1998, 85, 5–34.
  64. Nunes, A.S.; Dular, P.; Chadebec, O.; Kuo-Peng, P. Subproblems Applied to a 3-D Magnetostatic Facet FEM Formulation. IEEE Trans. Magn. 2018, 54, 1–9.
  65. Li, G.; Ojeda, J.; Hoang, E.; Gabsi, M.; Lecrivain, M. Thermal–Electromagnetic Analysis for Driving Cycles of Embedded Flux-Switching Permanent-Magnet Motors. IEEE Trans. Veh. Technol. 2012, 61, 140–151.
  66. Piriou, F.; Razek, A. Numerical Simulation of a Nonconventional Alternator Connected to a Rectifier. IEEE Trans. Energy Convers. 1990, 5, 512–518.
  67. Caractérisation électrique des tissus biologiques et calcul des phénomènes induits dans le corps humain par des champs électromagnétiques de fréquence inférieure au. Available online: https://theses.hal.science/tel-00179791v1/document (accessed on 10 January 2024)
  68. Ren, Z.; Razek, A. A Coupled Electromagnetic-Mechanical Model for Thin Conductive Plate Deflection Analysis. IEEE Trans. Magn. 1990, 26, 1650–1652.
  69. Freschi, F.; Giaccone, L.; Cirimele, V.; Canova, A. Numerical Assessment of Low-Frequency Dosimetry from Sampled Magnetic Fields. Phys. Med. Biol. 2018, 63, 015029.
  70. Li, C.; Ren, Z.; Razek, A. An Approach to Adaptive Mesh Refinement for Three-Dimensional Eddy-Current Computations. IEEE Trans. Magn. 1994, 30, 113–117.
  71. Piriou, F.; Razek, A. Calculation of Saturated Inductances for Numerical Simulation of Synchronous Machines. IEEE Trans. Magn. 1983, 19, 2628–2631.
  72. Madani, S.S.; Schaltz, E.; Kær, S.K. Thermal Analysis of Cold Plate with Different Configurations for Thermal Management of a Lithium-Ion Battery. Batteries 2020, 6, 17.
  73. Gabriel, S.; Lau R.W.; Gabriel, C. The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269.
  74. Barchanski, A.; Steiner, T.; De Gersem, H.; Clemens, M.; Weiland, T. Local Grid Refinement for Low-Frequency Current Computations in 3-D Human Anatomy Models. IEEE Trans. Magn. 2006, 42, 1371–1374.
  75. Hasgall, P.; Neufeld, E.; Gosselin, M.C.; Kingenböck, A.; Kuster, N.; Hasgall, P.; Gosselin, M. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. 2012. Available online: https://www.scienceopen.com/document?vid=a95fbaa4-efd8-429a-a59e-5e208fea2e45 (accessed on 1 November 2023).
  76. Makarov, S.N.; Noetscher, G.M.; Yanamadala, J.; Piazza, M.W.; Louie, S.; Prokop, A.; Nazarian, A.; Nummenmaa, A. Virtual Human Models for Electromagnetic Studies and Their Applications. IEEE Rev. Biomed. Eng. 2017, 10, 95–121.
  77. Yang, Y.; Zeng, S.; Li, X.; Hu, Z.; Zheng, J. Ultrahigh and Tunable Electromagnetic Interference Shielding Performance of PVDF Composite Induced by Nano-Micro Cellular Structure. Polymers 2022, 14, 234.
  78. Yao, B.; Hong, W.; Chen, T.; Han, Z.; Xu, X.; Hu, R.; Hao, J.; Li, C.; Li, H.; Perini, S.E. et al. Highly Stretchable Polymer Composite with Strain-Enhanced Electromagnetic Interference Shielding Effectiveness. Adv. Mater. 2020, 32, 1907499.
  79. Yun, T.; Kim, H.; Iqbal, A.; Cho, Y.S.; Lee, G.S.; Kim, M.-K.; Kim, S.J.; Kim, D.; Gogotsi, Y.; Kim, S.O. et al. Electromagnetic Shielding of Monolayer MXene Assemblies. Adv. Mater. 2020, 32, 1906769.
  80. Cheng, J.; Li, C.; Xiong, Y.; Zhang, H.; Raza, H.; Ullah, S.; Wu, J.; Zheng G.P.; Cao, Q.; Zhang, D., et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nano-Micro Letters 2022, 14, 80.
  81. Mohammad, M.; Wodajo, E.T.; Choi, S.; Elbuluk, M.E. Modeling and Design of Passive Shield to Limit EMF Emission and Minimize Shield Loss in Unipolar Wireless Charging System for EV. IEEE Trans. Power Electron. 2019,12, 12235–12245.
  82. Canova, A.; Corti, F.; Laudani, A.; Lozito, G.M.; Quercio, M. Innovative Shielding Technique for Wireless Power Transfer Systems. IET Power Electron. 2023, 1–8.
  83. Zang, Z.; Guo, Z.; Fan, X.; Han, M.; Du, A.; Xu., W.; Ouyang, Z. Assessing the Performance of the Pilot National Parks in China. Ecol. Indic. 2022, 145, 109699.
  84. Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.h.m.; Chan, K.M.A. et al. Pervasive Human-Driven Decline of Life on Earth Points to the Need for Transformative Change. Science 2019, 366, 6471.
  85. Coad, A.; Nightingale, P.; Stilgoe, J.; Vezzani, A. Editorial: The Dark Side of Innovation. Ind. Innov. 2021, 28, 102–112.
  86. Kruželák, J.; Kvasničáková, A.; Ušák, E.; Ušáková, M.; Dosoudil, R.; Hudec, I. Rubber Magnets Based On Nbr And Lithium Ferrite With the Ability to Absorb Electromagnetic Radiation. Polym. Adv. Technol. 2020, 31, 1624–1633.
  87. Qin, M.; Zhang, L.; Wu, H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Adv. Sci. 2022, 9, 2105553.
  88. Ilmiawati, A.; Falestin, M.; Maddu, A. Films from PVA and Sansevieria trifasciata Leaves Extracts as a Smartphone Protector with Radiation Reducing Property and Its LC-MS Analysis. Indonesian J. Chem. 2023, 23, 594.
  89. Razek, A. Strategies for Managing Models Regarding Environmental Confidence and Complexity Involved in Intelligent Control of Energy Systems—a Review. Adv. Environ. Energies 2023, 2, 1–16.
  90. Monteiro, J.; Pedro, A.; Silva, A.J. A Gray Code model for the Encoding of Grid Cells in the Entorhinal Cortex. Neural Comput 10/12 Appl. 2022, 34, 2287–2306.
  91. Wang, F.; Tian, D. On Deep Learning-Based Bias Correction and Downscaling of Multiple Climate Models Simulations. Clim. Dyn. 2022, 59, 3451–3468.
  92. Brassey, C.A.; Behnsen, J.; Gardiner, J.D. Postcopulatory Sexual Selection and the Evolution of Shape Complexity in the Carnivoran Baculum. Proc. R. Soc. 2020, 287, 20201883.
  93. Pendergraft, J.G.; Carter, D.R.; Tseng, S.; Landon L.B.; Slack K.J.; Shuffler M.L. Learning from the Past to Advance the Future: the Adaptation and Resilience of NASA’s Spaceflight Multiteam Systems Across Four Eras of Spaceflight. Front Psychol. 2019, 10, 1633.
  94. Amanatidis, G.; Aziz, H.; Birmpas, G.; Filos-Ratsikas, A.; Li, B.; Moulin, H.; Voudouris, A.A.; Wu, X.W. Fair Division of Indivisible Goods: Recent Progress and Open Questions. Artif Intell. 2023, 322, 103965.
  95. Meta-Learning in Games. Available online: https://arxiv.org/abs/2209.14110 (accessed on 10 January 2024).
  96. Esposito, G.; Terlizzi, A. Governing Wickedness in Megaprojects: Discursive and Institutional Perspectives. Policy Soc. 2023, 42, 131–147.
  97. Zonneveld, K.A.F.; Harper, K.; Klügel, K.; Chen, A.; Lange, L.; Versteegh, M. Climate Change, Society, and Pandemic Disease in Roman Italy Between 200 BCE and 600 CE. Sci. Adv. 2024, 19, 4.