Digital Technologies Research and Applications

Article

Enhancing Micro-Pump Efficiency: Multi-Objective Optimization of Low Voltage MEMS Switches for Drug Delivery Applications

Downloads

Ardehshiri, A., Soltanian‬‏, ‪Farzad, Moradkhani, M., & Nosrati, M. (2024). Enhancing Micro-Pump Efficiency: Multi-Objective Optimization of Low Voltage MEMS Switches for Drug Delivery Applications. Digital Technologies Research and Applications, 3(2), 73–88. https://doi.org/10.54963/dtra.v3i2.217

Authors

  • Alireza Ardehshiri Department of Electrical Engineering, Ilam branch, Islamic Azad University, Ilam 6931133145, Iran
  • ‪Farzad Soltanian‬‏
    1 Department of Electrical Engineering, Ilam branch, Islamic Azad University, Ilam 6931133145, Iran; 2 Department of Electrical and Computer engineering, University of Alberta, Edmonton AB T6G 2M9, Canada https://orcid.org/0000-0001-5001-9584
  • Masoud Moradkhani Department of Electrical Engineering, Ilam branch, Islamic Azad University, Ilam 6931133145, Iran
  • Mehdi Nosrati Department of Electrical Engineering, Manhattan College, New York NY 10471, USA https://orcid.org/0000-0002-1674-9935

This paper introduces an innovative approach for designing, optimizing, and simulating a low voltage MEMS switch specialized for micro-pump applications. The primary goal is to improve the efficiency of micro-pumps used in drug delivery. The design process focuses on tailoring the switch’s geometry for micro-pump purposes and employs objective functions encompassing actuation voltage, insertion loss in the up-state, and isolation in the down-state. To solve the intricate optimization task, mathematical programming is combined with the Multi-Objective Particle Swarm Optimization (MOPSO) meta-heuristic algorithm, enabling simultaneous consideration of actuation voltage, insertion loss, and isolation. By analyzing the Pareto front derived from these parameters, the study identifies design requirements and optimal levels for the switch. The proposed MEMS switch demonstrates remarkable performance metrics, including  and  values of –11.74 dB and –34.62 dB at 40 GHz, a pull-in voltage of 2.8 V, and an axial residual stress of 25 MPa. This research presents an innovative strategy for optimizing capacitive switch MEMS models, using a multi-objective approach and the MOPSO algorithm to enhance efficiency in micro-pump applications.

Keywords:

switch MEMS; Multi-Objective Particle Swarm Optimization (MOPSO) algorithm; uti-liti algorithm; spring constant; actuation voltage

References

  1. Joshitha, C.; Sreeja, B.S.; Radha, S. A Review on Micropumps for Drug Delivery System. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2017.
  2. Rebeiz, G.M.; Muldavin, J.B. RF MEMS Switches and Switch Circuits. IEEE Microw. Mag. 2001, 2, 59–71.
  3. Soltanian, F.; Baghelani, M. Fault Detection and Diagnosis of RF MEMS Resonators. In Proceedings of the First International Conference on MEMS and Microfabrication-ICMEMS2014, New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran, 18–19 February 2014.
  4. Cortes, V.S.; Fischer, G. Shunt MEMS Switch Requirements for Tunable Matching Network at 1.9 GHz in Composite Substrates.In Proceedings of the 2015 German Microwave Conference, Nuremberg, Germany, 16–18 March 2015.
  5. Guo, F.M.; Zhu, Z.Q.; Long, Y.F.; Wang, W.M.; Zhu, S.Z.; Lai, Z.S.; Li, N.; Yang, G.Q.; Lu, W. 2003. Study on Low Voltage Actuated MEMS RF Capacitive Switches. Sensors Actuators, A Phys. 2003, 108, 128–133.
  6. Liu, G.; Yang, F.; Bao, X.; Jiang, T. Robust Optimization of a MEMS Accelerometer Considering Temperature Variations. Sensors (Switzerland) 2015, 15, 6342–6359.
  7. Ma, L.Y.; Nordin, A.N.; Soin, N. Design, Optimization and Simulation of a Low-voltage Shunt Capacitive RF-MEMS Switch. Microsyst. Technol. 2016, 22, 537–549.
  8. Shekhar, S.; Vinoy, K.J.; Ananthasuresh, G.K. Surface-Micromachined Capacitive RF Switches with Low Actuation Voltage and Steady Contact. Microsyst. Technol. 2018, 26, 643–652.
  9. Deng, Z.; Wei, H.; Fan, S.;. Gan, J. Design and Analysis a Novel RF MEMS Switched Capacitor for Low Pull—in Voltage Application. Microsyst. Technol. 2015, 22, 2141–2149.
  10. Sravani, K.G.; Narayana, T.L.; Guha, K.; Rao, K.S. Role of Dielectric and Different Membrane Thin Films in Improving the Performance Of Capacitive Mems Switches Over Ka-Band Applications Role of Dielectric Layer and Beam Membrane in Improving the Performance of Capacitive Rf Mems Switches For Ka-Band Appl. Microsyst. Technol. 2018, 27, 493–502.
  11. Molaei, S.; Ganji, B.A. Design and Simulation of a Novel Rf Mems Shunt Capacitive Switch with Low Actuation Voltage and High Isolation. Microsyst. Technol. 2017, 23, 1907–1912.
  12. Ya, M.L.; Nordin, A.N.; Soin, N. Design and Analysis of a Low-Voltage Electrostatic Actuated RF CMOS-MEMS Switch. In Proceedings of the RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics, Daerah Langkawi, 25–27 September 2013.
  13. Bartolucci, G.; De Angelis, G.; Lucibello, A.; Marcelli, R.; Proietti, E. Analytic Modeling of RF MEMS Shunt Connected Capacitive Switches. J. Electromagn. Waves Appl. 2012, 26, 1168–1179.
  14. Chircov, C.; Grumezescu, A.M. Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines 2022, 13, 164.
  15. Bußmann, A.B.; Grünerbel, L.M.; Durasiewicz, C.P.; Thalhofer, T.A.; Wille, A.; Richter, M. Microdosing for Drug Delivery Application—A Review. Sens. Actuators, A: Phys. 2021, 330, 112820.
  16. Chappel, E.; Dumont-Fillon, D. Chapter 3—Micropumps for Drug Delivery. Drug Delivery Devices Ther. Syst. 2021, 31–61.
  17. Coln, E.A.; Colon, A.; Long, C.J.; Sriram, N.N.; Esch, M.; Prot, J.; Elbrecht, D.H.; Wang, Y.; Jackson, M; Hickman, J.J.; Shuler, M.L. Piezoelectric BioMEMS Cantilever for Measurement of Muscle Contraction and for Actuation of Mechanosensitive Cells. MRS Commun. 2019, 9, 1186–1192.
  18. Kumar, P.A.; Sravani, K.G.; Sailaja, B.V.S.; Vineetha, K.V.; Guha, K.; Rao, K.S. Performance Analysis of Series: Shunt Configuration-Based RF MEMS Switch for Satellite Communication Applications. Microsyst Technol. 2018, 24, 4909–4920.
  19. Maluf, N.; Williams, K. An introduction to microelectromechanical systems engineering. Artech House; 2004. Available online: https://us.artechhouse.com/mobile/An-Introduction-to-Microelectromechanical-Systems-Engineering-Second-Edition-P806.aspx?gad_source=1&gclid=EAIaIQobChMI6Juizu-bhgMVJhB7Bx24-gy-EAAYAiAAEgJcN_D_BwE (accessed on 23 September 2023)
  20. Rebeiz, G.M. RF MEMS: Theory, Design and Technology. John Wiley & Sons, Inc.: New Jersey, USA, 2003; pp. 87–121.
  21. Rabinovich, V.L.; Gupta, R.K.; Senturia, S.D. The Effect of Release-etch Holes on the Electromechanical Behaviour of MEMS Structures. In Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97), Chicago, USA, 19 June 1997.
  22. Peroulis, D.; Pacheco, S.P.; Sarabandi, K.; Katehi, L.P.B. Electromechanical Considerations in Developing Low-voltage RF MEMS Switches. IEEE Trans. Microw. Theory Tech. 2003, 51, 259–270.
  23. Singh, T. Design and Finite Element Modeling of Series-shunt Configuration-based RF MEMS Switch for High Isolation Operation in K-Ka Band. J. Comput. Electron. 2014, 14, 167–179.
  24. Bazaraa M.S.; Jarvis J.J.; Sherali, H.D. Linear Programming and Network Flows, John Wiley & Sons, Inc.: New Jersey, USA, 2009.
  25. Fan, Z.; Seo, K.; Hu, J.; Goodman, E.D.; Rosenberg, R.C. A Novel Evolutionary Engineering Design Approach for Mixed-Domain Systems. Eng. Optim. 2004, 36, 127–147.
  26. Abraham, A.S.K. Patterns of Landholding and Architectural Patronage in Late Medieval Meath: A Regional Study of the Landholding Classes, tower Houses and Parish Churches in Ireland, c. 1300-c. 1540. (1995): 0026-0026. Available online: https://www.elibrary.ru/query_results.asp (accessed on 23 September 2023).
  27. Ranginkaman, M.H.; Haghighi, A.; Samani, H.M.V. Inverse Frequency Response Analysis for Pipelines Leak Detection Using the Particle Swarm Optimization. Int. J. Optim. Civ. Eng. 2016, 6, 1–12.
  28. Noorollahi, E.; Fadai, D.; Ghodsipour, S.H.; Shirazi, M.A. Developing a New Optimization Framework for Power Generation Expansion Planning with the Inclusion of Renewable Energy - A Case Study of Iran. J. Renew. Sustain. Energy 2017, 9, 015901.
  29. Jaafar, H.; Beh, K.S.; Yunus, N.A.M.; Hasan, W.Z.W.; Shafie, S.; Sidek, O. A Comprehensive Study on RF MEMS Switch. Microsyst. Technol. 2014, 20, 2109–2121.
  30. Angira, M.; Sundaram, G.M.; Rangra, K.J. A Novel Approach for Low Insertion Loss, Multi-band, Capacitive Shunt RF–MEMS Switch. Wirel. Pers. Commun. 2015, 83, 2289–2301.