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Abstract: The variation of the contraction force associated with the phantom motion used for the actuation of a bionic
upper-limb prosthesis represents a scenario encountered regularly by amputees, while prior research appears to not have
been able to succinctly address this problem. In this study, an extended prosthesis control system is proposed which is
able to recognise gesture intent motions alongside the prediction of an associated contraction force as part of an
advanced pattern recognition system. As part of this research topic, this paper introduces the proposed control
architecture and is based on the solving of the gesture recognition problem amidst varying contraction forces for a
transradial amputee with a seemingly faint phantom motion. The work involves the application of a novel decomposition
algorithm and the use of a set of computationally effective features, alongside the contrast of the recognition capabilities
of the proposed approach using various classification models. The results show an enhanced recognition of gesture
motion intent with the use of the decomposition method, despite the faint phantom motion signal from the amputee.

Keywords: prosthesis; pattern recognition; signal processing; bionics; EMG

1. Introduction
The hand and upper-limb of an individual serve as

means towards carrying out daily activities in addition to
navigating through the environment, thus the loss of a
portion of the upper-limb has steadily become a
widespread problem in society due to reasons that span
vascular diseases, accidents and also trauma from
conflict-related incidents [1]. The loss of an upper-limb
has implications concerning the independence and degree
of autonomy of the individual, in addition to deeper
rooted problems such as distress related to the phantom
sensations, and an imbalance of the human motor control
system and pathway [2]. Therapeutic measures exist to
help alleviate the distress associated with uncomfortable
phantom discomforts whilst the brain initiates the
neuroplastic adaptation effect to reorganise the cortex
and ultimately account for the loss of one of the body’s
functional parts [2]. The bionic prosthesis which
represents a functional replacement to the loss of an
upper-limb has also shown signs of being able to
compensate for the loss both from a functional and a
neurological perspective, where the augmentation of an
amputee with a bionic body part also serves to form a

‘cybernetic human motor control loop’, which helps to
cater unpleasant phantom sensations, as described by
Nsugbe et al. [2]. Thus, it can be said that the bionic
prosthesis serves as a holistic augmentation where it
caters to both physical and neurological voids in a human
being.

There exist various kinds of bionic upper-limb
prostheses depending on the level of upper-limb loss of
the amputee, where aside from transcarpal amputees, the
classes of amputees with a substantial amount of limb
loss include transradial (below elbow amputation),
transhumeral (above elbow amputation) and shoulder
disarticulation, each with a unique challenge and kind of
prosthesis [3,4]. Amongst the various kinds of bionic
prostheses, common challenges include ergonomics, cost,
and primarily the ability to sense and decode phantom
motions [5].

The majority of the prosthesis literature appears to
be centred around the research, development and design
of transradial prostheses, which has served as an
appealing platform for investigating prosthesis control
approaches with various kinds of physiological sensing

mailto:ennsugbe@yahoo.com
http://ojs.ukscip.com/index.php/dtra


Digital Technologies Research andApplications | Volume 2 | Issue 2 | December 2023

14

modules that later get carried over and further iterated
with regards to the extreme amputee cohorts
(transhumeral and shoulder disarticulation), who pose a
greater challenge in terms of the sensing of the phantom
motions and the decoding of the acquired stochastic
physiological signal [6–14]. Of the available control
architectures for bionic prosthesis, the pattern recognition
architecture appears to be the favoured control scheme
due to its overall intuitiveness, where the appropriate
functionality of the architecture hinges heavily upon an
appropriate solution to the gesture motion recognition
problem [4,5]. As a result, this has understandably
formed the core emphasis of the transradial prosthesis
literature, where researchers have employed different
sensing approaches and associated computational models
towards effectively solving the recognition problem with
a mixture of healthy and amputee subjects [15–21]. Also,
to a lesser extent, work has also been done in the
estimation of the contraction force associated with a
gesture motion as part of means towards robustifying the
control architecture to force variations, and also with a
potential towards an advanced prosthesis control
interface capable of closely mimicking the human upper-
limb, where gestures can be performed with a varying
level of contraction force and intensity [14,22,23].

Amongst the various research done in this area, key
work has been done by Al-Timemy et al. who
investigated the recognition of phantom gesture motions
amidst a varying force contraction in a group of
amputees [24]. As part of Al-Timemy’s work, prosthesis
control architectures were trained and validated with a
strategic combination of various contraction forces using
various feature sets, where they obtained a variety of
results and showcased quantitatively the effects of varied
contraction forces on the transradial prosthesis control
interface [24].

The work done in this study builds on the results
obtained by Al-Timemy et al., where the open-source
data was used to perform a pilot study on a multiphase
advanced prosthesis control inter- face capable of first
recognising an input gesture motion (irrespective of the
contraction force), and subsequently followed by an
estimation of the contraction intensity with which to
perform the desired gesture motion by. In the first
instance, this paper focuses on the gesture recognition
amidst a varying contraction force intensity. An image
and flow dia- gram of the proposed advanced control
architecture can be seen in Figure 1.

Figure 1. Image of the proposed multistage prosthesis
control architecture.

This pilot work was done with the use of a
transradial subject who had undergone traumatic
amputation and had been amputated for the longest time
relative to the other amputee subjects. The subject
utilised a cosmetic prosthesis, from which it can be
inferred that the phantom motions would be expected to
produce weak contractions due to the onset of
neuroplasticity and the reorganisation of the motor cortex,
when a certain limb pathway ceases to be used [25]. As
part of means towards dealing with the problem of a
potentially faint phantom motion and a likely low signal-
to-noise ratio, we employed a novel and computationally
effective signal decom- position method previously
utilised in various aspects of medical signal processing
and capable of deconvolving a signal as part of a search
process to find the optimal region in the signal which
minimises uncertainty and maximises the prediction
capability [26–31]. Specifically speaking, the
contributions of this paper are as follows:

-The use of a novel decomposition alongside a set
of selected features to investigate the gesture recognition
of a faint phantom motion.

-A contrast between various classification models
spanning decision tree (DT), linear support vector
machine (L-SVM) and quadratic support vector
machine (Q-SVM).

2. Methods

2.1. Data Collection
The data from the amputee subject was collected

from an army base in Iraq by Al-Timemy et al., where
the amputee was missing a segment of his left upper-limb,
an image of which can be seen in Figure 2 [24]. Details
regarding the amputee can be seen in Table 1 [24].
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Figure 2. Image of a transradial amputee missing a
segment of his left upper-limb. [24]

Table 1. Details on the amputee subject.

can be expected to be higher than the prior Low force
contraction.

High Force: this force level was deemed to be the
maximum contraction force that the amputee was
comfortable making, but was less than the maximum
voluntary contraction force which could not be sustained
by the amputee due to a lack of use, and typically
resulted in pain and discomfort in the amputee.

It was noted by Al-Timemy et al. that the process of
producing the Low and High contraction intensity was
deemed to be challenging as these represented muscular
contraction levels that had become scarcely used by the
amputees [24]. Thus, these contractions caused
discomfort, an increased cognitive loading and

Age Gender Cause of Stump Stump Time Since Prosthesis Use occasional tremor in the amputee during the data
Amputation Length Circumference Amputation acquisition and can also be thought to contribute to

30 Male Trauma 29 cm 23.5 cm 28 years Cosmetic

Ethical approval was approved for the study by the
local authority, while a written consent was provided by
the participant prior to the commencement of the study
[24]. The skin of the subject was cleansed with a
combination of alcohol and an abrasive skin preparation
gel prior to the placement of electrodes from an
electromyography (EMG) sensing system where 12
electrodes were placed on the amputee’s stump, which
were ordered in two rows around the arm of the amputee
with the elbow joint serving as the reference point, and
where the European recommendations were followed [24]
.A custom EMG acquisition system was used in the
acquisition of the neuromuscular signals with a sampling
rate of 2000 Hz [24].

The gesture motions conducted as part of the data
collection included fine digit flexions as well as gripping
motions, all of which can be said to be important hand
movements in day-to-day activities [24]. The list of these
gestures is as follows: Spherical Grip, Index Flexion,
Hook Grip, Thumb Flexion, Tripod Grip, and Fine Pinch;
while a visual interactive system allowed for an overview
of how much contraction force they were exerting [24].
The aim of the force variation was to mimic a real life
operating scenario where the contraction force used to
produce gesture motion varies [24]. For each gesture
motion, three distinct contraction levels were produced,
namely, Low, Medium and High, where each force and
associated gesture motion was held for 8-12 seconds
across a varied number of itera- tions. The acquisition
protocol utilised for each contraction force level is as
follows:

Low Force: the low contraction force represents a
contraction intensity which is below a determined
baseline level of contraction; this was held for a
timeframe spanning 8- 12 seconds for multiple iterations.

Moderate Force: the moderate force in this case
represents the baseline and nominal force that an
amputee produces when they make a gesture motion, and

uncertainty within the acquired physiological signals [24].

In this work, a candidate trial spanning 10 seconds
was utilised for each gesture alongside the accompanying
force contraction level. This was further split using a
disjointed windowing scheme spanning 250 ms to
produce samples used for the decomposition exercise and
subsequent feature extraction.

2.2. Signal Decomposition
As mentioned, the concept of signal decompositions

involves the methodical and algorithmic separation of a
candidate signal in an attempt to find a region of interest
which minimises the overall uncertainty in the signal and
allows for an accurate prediction. Applications of signal
decomposition methods span areas such as the analysis
of physiological signal in medicine, econometrics, and
seismic explorations, to name a few [32].

The Linear Series Decomposition Learner (LSDL)
represents a metaheuristics decomposition method
devised by Nsugbe et al. as part of source separation
exercises involving the estimation of particle size
distributions in powder mixtures using high frequency
acoustic emission signals [26 – 31]. The decomposition
has been seen to surpass the wavelet decomposition and
is also characterised by being computationally efficient
due to working in the time domain and the utilisation of a
linear threshold as the basis function for the
decomposition. Aside from its original inception case
study, the LSDL has seen broad applications in various
areas of clinical medicine and physiological signal
processing spanning rehabilitation, pregnancy medicine,
and adolescent schizophrenia[30,31,33].

The threshold parameters for the LSDL can be seen
in Table 2, and a comprehensive list of the heuristics
used in tuning the series of linear thresholds for the
decomposition can be seen in Nsugbe et al [30]. The
various parameters used for the implementation of a
threshold given absolute representation of a signal |sn|, a



Digital Technologies Research andApplications | Volume 2 | Issue 2 | December 2023

16

tree-like decomposition flow of the process, can be seen
in Figure 3.

Table 2. Threshold parameters for the LSDL.

2.4. ClassificationMethods
This is example 1 of an equation:

- Decision Tree (DT): the DT represents a form of
non-parametric classification model which sorts data into
various classes using sorting rules garnered from the
input feature samples, and is regarded as a white box
modelling method due to its high interpretability appeal
[36].

Where Tl_upper_n and Tl_lower_n are the thresholds for
the upper and lower amplitude regions of the signal.

Figure 3. Decomposition tree representation for the
LSDL (where T indicates the length of the candidate
signal). [34]

From a mathematical perspective, the LSDL de-
composition series can be expressed as follows:

2.3. Feature Extraction
The features used in this study comprise an

ensemble of select statistical features capable of
modelling these kinds of signals and used in various
capacities in previous studies where, as mentioned, they
comprise of mainly statistical features which are
computationally efficient [35]. The list of features is as
follows: mean absolute value (MAV), 4th order
autoregression (AR), simple square integral (SSI),
enhanced mean absolute value (EMAV), log detector
(LD), Wilson amplitude (WAMP), variance (VAR), root
mean square (RMS), kurtosis (Kurt), and maximum
cepstrum coefficient (Ceps)[35].

- Support Vector Machine (SVM): this
classification model is based around the higher
dimensional projection of the data while using a sub-
portion of the dataset known as support vectors, and in an
iterative manner the instillation of class boundaries are
formed and subsequently followed by a downward
projection to a lower dimensional space while retaining
the formed class boundaries in a feat regarded as the
‘kernel trick’ [30].

Two variations of the SVM were used in this work,
namely, the linear SVM denoted as L-SVM and the
quadratic SVM denoted as Q-SVM, both of which
represent iterative classifiers with a low model
complexity.

Both classifiers were validated using the hold-out
approach where 80% of the data was used to train the
classifiers, with the remained 20% serving as the test-set
to obtain the final classification accuracy of the trained
classifier.

3. Results
The results of the LSDL decomposition can be seen

in Table 3, where it can be noted that the optimal
threshold region is seen to be in the first iteration of the
lower amplitude region of the signal. All subsequent
signals were decomposed using the parameteres
corresponding to the optimal threshold.

Table 3. LSDL decomposition results.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
Upper 2.2432 n/a* n/a* n/a*
Lower 2.8000 2.7803 2.7536 2.7167

*Where n/a indicates decompositions that could not be carried out due to
a constrained number of samples.

3.1. Pattern Recognition Design and Test with
Combined Forces

The results for the training and testing of the
classifier of the pattern recognition system using all three
force levels can be seen in Table 4, where it can also be
intuitively noted that this exercise represents a realistic
reflection of how the prosthesis would be used in a real-
life scenario, where the control and actuation can be
expected to be initiated with a variety of forcing levels.
From Table 4, it can be seen that a generally low
accuracy is obtained when the raw signal is used, with
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the highest accuracy seen to be the Q-SVM with 56.8%.
A sharp increment is noted for when the signal is pre-
processed with the LSDL, where there is an improvement
in the range of around 15–25% depending on the
classifier, of which the best performance was seen to be
the DT, and closely followed by the Q-SVM. From this it
can also be inferred that a non-linear sorting and decision
boundary is needed for a good classification performance
for this problem.

As mentioned, the training of the pattern
recognition system with a range of forces as described
also serves as a form of robustness to the system, as this
can also help cater to the common problem of gesture
misclassification due to muscular fatigue, and therein
adds an extra layer of technical capability to the pattern
recognition system.

Table 4. Raw signal.

3.2.1. Low Force

The result for the training and testing with the low
force can be seen in Table 5, from which an
improvement can firstly be noted (especially in the case
of the raw signal) when compared with Table 4, where
all the forces were used in the training and test process.
This is thought to be due to a simplification of the
problem by the use of a homogeneous/single force level
in the training and testing phase, which simplifies the
recognition problem in a sense. The LSDL has also
undergone a slight increment in the classification
accuracy due to the simplification of the problem, where
the Q-SVM is seen to produce the highest classification
accuracy at 77.5%.

Table 5. Results of the pattern recognition exercises with
a low force.

DT (%) L-SVM (%) Q-SVM (%)

Classification
Accuracy (Raw

Signal)
Classification

Accuracy (LSDL

DT (%)L-SVM (%) Q-SVM (%)

46.1 45.8 56.8

72.2 62.6 71.8

Classification
Accuracy

(Raw Signal)
Classification
Accuracy
(LSDL

63.4 53.9 67.6

74.4 76.4 77.5
Decomposed Signal)

A principal component analysis (PCA) plot, which
qualitatively compares the cluster separation extent of the
raw data and the LSDL decomposed signal, can be seen
in Figure 4.

Figure 4 shows the clusters for three gestures
comprising a variation of the force levels, where it can
be seen that with the LSDL decomposition there is a
greater degree of cluster separability, while in the case
of the raw signal there exists a substantial amount of
cluster overlap, which makes the classification between
data clusters challenging.

Figure 4. PCA plot of the LSDL pre-processed
decomposition (top) and the raw signal (bottom), with
99% variability explained.

Decomposed
Signal)

3.2.2. Medium Force

The results for the Medium force exercise can be
seen in Table 6, where it can be seen that the result of the
raw signal appears to have gone down slightly. This can
be assumed to be due to the fact that the probability
distribution gets more dispersed as contraction force
increases and therein adds further variability to the
overall sample, thus potentially contributing to the
observed reduction in the classification accuracy. This
notion does not extend to the LSDL results as a signal
decomposition is carried out as a pre-processing strategy,
where it can be seen that the results appear to have
undergone a slight increase. The reason for this is
thought to be linked to the collection of the data, where it
is noted that the Medium contraction force represents the
nominal baseline contraction that the amputees produce
on a frequent basis, whereas anything out- side of this
(i.e., Low and High contraction forces) caused
discomfort and pain in the amputees, and therein a source
of uncertainty. The Q-SVM produced the best
classification accuracy with 81.7%.

Table 6. Results of the pattern recognition exercises with
a Medium force.

DT (%) L-SVM (%) Q-SVM (%)
Classification

3.2. Pattern Recognition Design and Test with
Individual Forces

Accuracy (Raw
Signal)

Classification
Accuracy (LSDL

55.2 46.1 62.7

79.0 77.9 81.7
Decomposed Signal)
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3.2.3. High Force
The results for the final force category can be seen

Table 8.Computational time results.
Selection

in Table 7 for the High force, where for the raw signal Selection Time Selection Time-Q-SV
the trend continues, with the classification results dipping LSDL Feature -DT (for the Time-L-SV M M (for the

Decomposition Extraction prediction of a (for the prediction
yet again in this case due to the probability distribution (for 1 (for a 250ms single prediction of a of a single

function further expanding with an increased level of
contraction force and therein being more variable as a

channel) (ms) segment) (ms) instance) (ms) single
instance) (ms) instance)

(ms)

whole, and contributing to the perceived drop in the
accuracy. In the case of the LSDL, although a
considerable increment is observed in the classification
accuracy when compared with the raw signal, a slight
accuracy degradation has been seen to occur, which is
due to the aforementioned effects of the discomfort and
pain encountered by the amputee in the production of
contraction forces separate from the nominal Medium
level contraction force. Nevertheless, the LSDL
continues to be able to recognise gestures with a high
accuracy, which in this case the best accuracy is seen to
be in the order of 77 % for the Q-SVM.

Table 7. Results of the pattern recognition exercises with
a High force.

DT (%) L-SVM (%) Q-SVM (%)
Classification

5.46 ± 0.48 79.0 ± 40.0 19.0 ± 15.3 59.4 ± 8.5* 50.2 ± 7.0*

* Although the selection time for both the L-SVM and Q-SVM are of
somewhat similar timeframes, it can be noted that the training time of the
Q-SVM is considerably longer than that of the L-SVM (alt- hough not
displayed here).

4. Conclusion
The bionic prosthesis represents the most functional

alternative to the loss of an upper-limb, and due to its
functionality, it also helps in alleviating the symptoms of
an unpleasant phantom sensation, where the pattern
recognition control scheme is seen to be the favoured
control architecture due to its overall intuitiveness. The
majority of the research in the literature that explores the
design of the pattern recognition control interface is
primarily centred around gesture recognition of phantom
motions, and to a lesser extent, the prediction of an

Accuracy
(Raw Signal)
Classification
Accuracy
(LSDL

Decomposed

49.9 47.7 60.3

73.5 70.9 77.0

associated extent of the contraction force.

As part of an ongoing study, the design of an
advanced pattern recognition prosthesis control system
capable of recognising an input gesture from a phantom
motion, followed by a successive estimation of the

Signal)

3.3. Computational Time Evaluation
Computation times were conducted based on a

single patient’s dataset, where the metrics were
computed with a laptop of Intel(R) Core™ i5-3210M
CPU @ 2.50 GHz, with a 64-bit operating system and
6GB RAM.

The computation time for the LSDL can be seen to
be around 5 ms, which is a distinctively low figure given
its structure and is what has come to be expected from
the approach. The feature extraction time produced for a
windowed segment of 250 ms can be seen to be under 80
ms, which is a relatively efficient figure given the
number of features, with the computation time benefits
from the feature group being largely statistical. The
selection time was evaluated for the three different
models, where it can be seen that the DT produced the
lowest amount of time for the computation metric, while
the different SVM models produced higher computation
time due to the iterative nature of the model architecture.
Given the relatively low computation time of the DT,
which can be likened to that of the discriminant analysis
– the favoured classification architecture in this area due
to its optimal computation time – it can be recommended
that the DT be further explored in subsequent studies on
the basis of the results obtained in this research.

contraction force was investigated, where in the first
instance the gesture recognition portion of the control
system was studied amidst a varying level of contraction
forces from the phantom motion. The work utilised an
open-source transradial amputee database, where data
from an amputee whose phantom is believed to produce a
faint contraction due to the time since amputation was
utilised for the exercises carried out in this study. This
involved the use of a computationally efficient
decomposition algorithm whose results were contrasted
against the raw signal with a set of computationally
efficient statistical features along- side a contrast of the
recognition performance with three different classifiers.
Various case studies were conducted within this study
where the first involved the recognition of gestures
amidst varying forces and also a single force only.

The results from the varying force exercise, which
represent a realistic depiction of what is likely to be
encountered in the daily life of an amputee, showed an
improved accuracy when the decomposition algorithm
was used as a pre-processing mechanism. In the case of
the single force, the Medium contraction force produced
the best accuracy amidst the continued use of the
decomposition algorithm, with a lower accuracy obtained
for the other forces due to the lack of familiarity
alongside the associated discomfort accompanied in the
production of those forces. For the various classification
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models used in this study, the DT produced the best
combination for computation time and classification
accuracy, and thus is recommended to be utilised in the
area of gesture recognition and prosthesis control.

Subsequent work in this area will now involve
further exercise on the prediction of an accompanying
contraction force using classification algorithms, and also
the exploration of regressions as a means towards a
continuous estimation of the con- traction force.
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