
Digital Technologies Research andApplications | Volume 01 | Issue 02 | August 2022

https://doi.org/10.54963/dtra.v1i2.81 89

Digital Technologies Research and Applications
http://ojs.ukscip.com/index.php/dtra

Article

Programming Techniques for Considering m Desired Conditions
from n Possible Conditions
Surapon Riyana 1,*, Nigran Homdoung 1,2 and Kittikorn Sasujit 1,2

1 Maejo University, Sansai, Chiangmai, 50290, Thailand
2 School of Renewable Energy, Maejo University, Sansai, Chiangmai, 50290, Thailand

Received: 15 August 2022; Accepted: 6 September 2022; Published: 19 September 2022

Abstract: The performance of computer programs (or the hardware that can be programmed such as IoTs,
embedded computers, and PLCs) is generally based on the complexity of the particular program development
technique. High complexity often uses more execution times and system resources. For this reason, the computer
program is less computational complexity to be desired. The conditional statements tell computers what certain
information is a major cause of computer program complexities, e.g., considering m desired conditions from n
possible conditions. To achieve this aim in computer programs, the data combination is often utilized. However,
it is high complexity. Moreover, they cannot give that one condition takes precedence over others. To rid these
vulnerabilities of combined conditions, a simple programming technique for considering m desired conditions
from n possible conditions is proposed in this work, which is based on the summation of the condition weights.
It only has the complexity of search spaces and data constructions to be O(n) and each condition can be set to
be different precedence from the others. Furthermore, the proposed technique is evaluated by extensive
experiments. From the experimental results, they indicate that the proposed technique is more effective and
efficient than the comparative technique.

Keywords: condition weights; weighted summations; data combinations; data considerations; programming techniques

1. Introduction
The introduction should briefly place the study in a

broad context and highlight why it is important, in
particular, in relation to the current state of research in
the field. Finally, it can conclude with a brief statement
of the aim of the work and a comment about whether that
aim was achieved.

A hardness problem in computer programming is
how to specify m desired system conditions from n
possible system conditions. To rid this problem, the data
combination technique is applied. For example, if a, b, c,
and d are the possible system conditions that must be
considered such that they are based on the system
limitation that must have two of four system conditions
that are satisfied. Thus, there are six combined conditions,
i.e., ab, ac, ad, bc, bd, and cd, that must be considered in
the system. The infographic of the combined system
conditions with this example is shown in Figure 1.

From the example, we can claim that the search
spec for considering the desired system conditions can
be calculated by Equation (1).

Figure 1. The infographic of the 2-size of the combined
system conditions as a, b, c, and d.

n!
S(n, m) =m!(n −m)!
where,
● n is the number of all possible conditions,
● m is the number of the desired conditions that
must be satisfied, and
● n≥m.

(1)

Digital Technologies Research andApplications | Volume 01 | Issue 02 | August 2022

90

In addition, if we use the program iteration [1] to
construct all m-size combined conditions from n possible
conditions, the complexity of constructing all m-size
combined conditions from n possible conditions can be
calculated by Equation (2). Thus, the complexity of
constructing all 2-size combined conditions of a, b, c,
and d is based on the program iteration to be 20, i.e.,
G(4,2) = [4!−(4−2)!]+[3!−(3−2)!]+[2!−(2−2)!] = (4
∗ 3) + (3 ∗ 2) + (2 ∗ 1) = 20.
G(n,m) = [n! − (n − m)!] + [(n − 1)! − ((n − 1) −m)!]

+ ··· + [(n − (a − 1))! − ((n − (a − 1)) −m)!] (2)
+ [(n − a)! − ((n− a) −m)!

In a real-world case, we suppose that we are
developing a smart farm system that uses seven related
smart soil moisture sensors, which are independently
installed on the farm for controlling the water pump.
Moreover, this smart farm system is due to be based on
the system limitation that if two of seven soil moisture
sensors respond to turn on the water pump, the water
pump is turned on by the system. In this situation, if the
considerably desired condition processor of the system is
based on the brute force technique [2], i.e., data
combinations [3–5], there are twenty-one combined
system conditions, S(7,2) =21, that must be considered.
However, if the system limitation for turning on/off the
water pump is changed to be three of seven system
conditions that must be satisfied. We can see that there
are thirty-five combined system conditions, S(3, 7) = 35,
that must be considered. Furthermore, if a new soil
moisture sensor is added to the system (i.e., the system
uses eight soil moisture sensors), we can see that there
are fifty-six combined system conditions, S(3,8) = 56,
that must be considered. In addition, aside from the
search space cost, the cost of constructing all possible
combined conditions must also be considered in data
combinations. The cost of constructing all possible
combined conditions can be calculated by Equation (2) .
From these examples, it is clear that the number of the
considered system conditions very much affects the
search space for considering the desired system
conditions. Moreover, we can observe that this
considerably desired system condition processor further
has an important vulnerability that must be improved,i.e.,
it cannot give that one system condition takes precedence
over the other system conditions.

To rid of the mentioned vulnerabilities in computer
programming, this work proposes a simple, effective, and
efficient technique for considering m desired system
conditions from n possible system conditions. That is, the
search space for considering m desired system conditions
from n possible system conditions is reduced to only be n.
Moreover, the proposed technique allows the developer
who can set the priority of the system conditions to be
different precedence. To achieve these aims of the
proposed technique, the weighted conditions and their
summation are applied.

Related Work

Currently, the various smart technologies (e.g.,
computers, Internet of Things (IoT) or Internet of
Everything (IoE) [6,7], smart homes [8], smart offices [9],
smartphones [10,11], smartwatches [12,13], and others)
play in the daily life of humans. With smart technologies,
we observe that aside from smart devices, the software
for controlling them is also very important. Or we can
say that the efficiency and effectiveness of smart
technologies are often based on their controlled
intelligence software. To achieve the intelligence
software of smart technologies, there are several essential
software development and management techniques to
be proposed such as agile development methodology [14
–17], scrum development methodologies [18–20],
waterfall development methods [21,22], rapid application
developments [23,24], feature-driven developments, and
extreme programming (XP) [25,26]. Generally, the
efficiency and effectiveness of software depend on
software development and management techniques. For
this reason, software development and management
techniques are in place to ensure efficient operations
across the software. Aside from software development
and management techniques, data security [27–29], data
privacy [30–34], and data complexity [35,36] must also
be considered. The complexity of software generally
directs to affect the software performances [37–39] and
the usage resources [40]. To the best of our knowledge
about software complexities, conditional statements tell
a computer what to do with certain information, it is a
major cause of computer software complexity. A
conditional statement is often available in computer
software, it is considering m desired conditions from n
possible conditions. To achieve this aim in computer
software, data combinations [3–5] are often applied.
However, data combinations generally have the high
complexity. That is, it has the search space to be
O(S(n,m)), and they further have the complexity of
constructing all possibly combined conditions to be
O(G(n,m)). Moreover, data combinations cannot give
that one condition takes precedence over the other
conditions. To rid these vulnerabilities of data
combinations, a simple, effective, and efficient
programming technique for considering m desired
conditions from n possible conditions is proposed in this
work, it is based on condition weights and the summation
of condition weights. For this reason, the complexity of
the proposed technique is only O(n). Moreover, each
condition is available in programs, it can be set to be
different precedence.

2. Materials and Methods

2.1. Problem Definitions
Definition 1 (Possible system conditions): Let C

= {c1, c2,..., cn} be the set of all possible conditions
that are available in the system such that every cz
∈C , where 1 ≤ z ≤ n, is represented by a system

Digital Technologies Research andApplications | Volume 01 | Issue 02 | August 2022

91

condition that is in the form as conditionvz∆ cz, where
∆ is a particularly compared operation and
conditionvz is the specified value that is used to
compare cz. For this reason, the compared answer
between conditionvz and cz, with using ∆ is either
“true” or “false”.

Example 1 (Possible system conditions): Let C
be constructed from c1, c2, c3, and c4 such that they
are represented by the numeric as 5, 2, 3, and 5
respectively. Let vc1, vc2, vc3, and vc4 be the compared
value for c1, c2, c3, and c4 respectively such that
they are represented by the numeric as 5, 4, 3, and 1
respectively. Let c1 = vc1, c2 ≥ vc2, c3 > vc3, and c4 > vc4
be the given compared system conditions. The answer
of these compared system conditions is true, false,
false, true respectively.

Definition 2 (System condition weights): Let W
= {w w wccc12, ,..，

n }, where wc 1
,wc 2

, ...，wcn ∈ N∪0, be the
set of the system condition weights or the system
condition priorities for c1, c2,..., and cn respectively.
Let wcz1 , wcz2 ew be the specified system condition
weight for cz1 , cz2 e C respectively. If wcz1 > wcz2 ,
the mean of system conditions is that cz1 is the higher
priority than cz2 .

Definition 3 (System condition sequences): Let
Cseq = (cz1 , cz2, …, czn), where cz1 , cz2 , …, czn eC , be
the se - quence ofC such that they are satisfied by
the limitations that are cz1 u cz2 u… uczn =C, cz1 ncz2 n
… n czn = D, andwcz1 wcz2 …wczn.

From the Example 1, we suppose that the
developer needs to set the system condition priority
that the system condition c1 is the highest priority.
Moreover, the priority of c3 is second. Both remaining
conditions, c2 and c4, are set to be the lowest priority.
For this situation, the developer could set the weight
of c1 to be 3. The weight of c3 is 2. And the weight of
c2 and c4 is set to be 1. Therefore, the sequence of the
system conditions c1, c2, c3, and c4 is satisfied by the
limitation of Definition 3 to be (c1, c3, c2, c4) or (c1, c3,
c4, c2).

Definition 4 (Desired system conditions): Let D
= fd1, d2, …, dm}, where D C ,be the set of the desired
system conditions such that the compared answer
between every system condition dy e D and its
compared value vdy is only true.

With Example 1, the system conditions can
satisfy the limitation of Definition 4, they are only c1
and c4 because they have the compared answer to be
true.

2.2. (n,m)-Conditions Based onDataCombinations
This section is devoted to presenting the (n ,m)-

Condition technique that based on data
combinations. Before this (n,m)-Condition technique

will be presented, an important definition of data
combinations is defined.

Definition 5 (Desirably combined system
conditions): Let m be a positive integer. Let P(C)
denote the set of all subsets of C. Let COMB = {comb
comb e P(C) Λ │comb│= m} be the desirably
combined system conditions. That is, COMB is the set
of the subset of C such that every element comb ∈
COMB has the size to be equal and greater than m and
the compared answer between it and its particularly
compared value is further true.

This (n,m)-Condition technique is simple and
straightforward. It generally uses the program iteration
to specify m desired system conditions from n possible
system conditions. A (n,m)-Condition algorithm is
shown in Algorithm 1. To specify m desired system
conditions from n possible system conditions, the size
of C is firstly investigated. If the size of C is less than
m, the algorithm returns Failure. Because m desired
system conditions from C cannot be possible. If not,
the second step of the algorithm is enabled, i.e., all
possible combinations of C are generated. Finally, the
algorithm finds m desired system conditions. If the
algorithm discovers m desired system conditions such
that m system conditions that have the state to be True,
the algorithm returns True. If not, the algorithm returns
False.

Algorithm 1: (n ,m)-Conditions based on data
combinations.

Let Cbe the set of all possible conditions;
Let m be the number of the system conditions that

must be satisfied;
Let COMB be the set of all possible combinations

of C;
if |C|<m then
return Failure;
end if
COMB:=COMBINATION(C) ;
while COMB do
if comb1 ,..., combm are True, where

comb1,...,combm eCOMB, then
return True;

end if
end while
return False;

With the Algorithm 1, we can claim that the
lower bound, the best case, of specifying m desired
system conditions from n possible system conditions
by using this (n,m)-Condition technique is 1, Ω(1),
and the upper bound, the worst case, of this (n,m)-
Condition technique is G (n,m),i.e., O (G (n,m)). In
the best case, it can occur when the system is
extremely fortunate, i.e., the first element of COMB is
considered to satisfy the specified system conditions.
The worst case can occur when the satisfied system

Digital Technologies Research andApplications | Volume 01 | Issue 02 | August 2022

92

conditions are the latest element of COMB or the
system limitation does not appear in COMB.

2.3. (n, m)-Conditions Based on the Summation
of the System Condition Weights

This section is devoted to proposing a simple,
effective, and efficient (n,m)-Condition technique
that is based on the system condition weights and
the summation of the system condition weights.
Before it will be presented, an important definition is
defined.

Definition 6 (Summed weight (n,m)-
Conditions): Let DW be represented by a positive
integer or zero such that it is the referred system
condition weight. If Σm

y = 1 dy 之 DW , where dy eD, the
system is satisfied by the system conditions, otherwise,
the system cannot satisfy the system conditions.

To achieve m desired system conditions from
n possible system conditions by using this (n,m)-
Condition technique, the weight for every system
condition is defined by a positive integer or zero in
the first step. For example, we suppose that the
system has four conditions c1, c2, c3, and c4 that must
be considered. The system conditions only have the
state to be true, which can affect the process(es) of
the system. Furthermore, we assume that the priority
of these system conditions is different, i.e., c1 is
higher priority than c2, c3, and c4. Moreover, c2, c3,
and c4 have the same of the priority. For this situation,
the developer who could set the weight for c1 to be 2,
i.e., wc1=2. The weight for c2, c3, and c4 could be set to
be 1,i.e., wc2= 1, wc3= 1, and wc4= 1. In the second step,
the system conditions are resorted (re-sequenced) by
their weights by descending order. Thus, a resorted
data version of the system conditions that is given in
this example to be c1 →c 2 →c 3→ c 4 . The referred
system condition weight DW is defined in the third
step. We suppose that the referred system condition
weight is set to be 3. In the fourth step, the state of
these system conditions is investigated, and their
weights are summed. Moreover, the summed weight
of these system conditions, Σ 4

y =1 cy, and the referred
system condition weight DW are compared. If Σy = 1 cy
is equal to or greater than DW or all possible system
conditions are investigated completely, the system
investigation processor is ended and sets the
returned system state. Finally, the state of the system
is returned, i.e., when Σ4

y= 1 cy 之 DW the returned system
state is true, otherwise, the returned system state is
false.

The (n,m)-Condition processor based on the
condition weights and their summation to be shown
in Algorithm 2. With this algorithm, we can claim
that the lower bound, the best case, of specifying m
desired system conditions from n possible system
conditions by using the summed weight (n,m)-

Condition is also 1, Ω(1). The best case of this (n,m)
-Condition technique can occur when the system is
extremely fortunate, i.e., the weight of the first
considered system condition can satisfy the referred
system condition weight. With the upper bound, the
worst case, of this (n,m)-Condition technique is n or
|C|, i.e., O(n) or O(|C|), because every system
condition can only be considered to be at most one
time. The worst case of using the summed weight
(n ,m)-Condition can occur that the satisfied system
limitation can be available when the system must
consider all possible system conditions or the
specified system limitation cannot be impossible.
Algorithm 2: (n ,m)-Conditions based on the condition

weights and their summation.
Let c2, c3 , … , and cn be all possible system

conditions;
Let Wc1,Wc2,..., and Wcn be the weight for c1, c2, ...,

and cn respectively;
Let m be the number of system conditions that must

be satisfied;
Let DWbe the referred summation weight;
Let SUM be the summed weight of the satisfied

system conditions;
Let Cz1, Cz2,..., and C zn be the resorted data version

of c1, c2,..., and cn by descending order; SUM: = 0;
for g: = 1 to n do
if Czg is True then
SUM: = SUM+Czg ;
if SUM ≥ DWthen

return True;
end if

end if
end for
return False;
With Algorithm 1 and Algorithm 2, they are

clear that the summed weight (n ,m)-Condition is
simple, effective, and efficient than the (n,m)-
Condition that based on data combinations.

3. Results and Discussion
In this section, it is proposed to evaluate the

effectiveness and efficiency of the summed weight (n,m)
-Condition and the (n,m)-Condition that based on data
combinations.

3.1. Experimental Setup
All experiments are proposed in this work, they are

conducted on four Intel(R) Xeon(R) Gold 5318H@2.50
GHz CPUs with 512 GB memory and 10 TB NVMe
HDD running Windows Server 20222 Standard. Their
implementations are built and executed on Microsoft
Visual Studio 2022 Community Edition.

3.2. Effectiveness

Digital Technologies Research andApplications | Volume 01 | Issue 02 | August 2022

93

This section is devoted to evaluating the
effectiveness of the summed weight (n ,m)-Condition
by comparing it with the (n ,m)-Condition that based
on data combinations.

The experimental results are shown in Figure 2.
They are proposed to evaluate the effect of search
spaces that based on n. For experiments, the value
of m, the number of the desired system conditions, is
fixed to be 2. The value of n, the number of all
possible system conditions, is varied from 2 to 512.
In addition, with the summed weight (n,m)-Condition,
every condition’s weight is fixed to be 1. Furthermore,
we give the system conditions (the desired system
conditions) that satisfy the system limitation to appear
at the end of the system conditions. The experimental
results show that the summed weight (n,m)-
Condition is more effective than the (n,m)-Condition
that based on data combinations. Especially as the
number of possible system conditions is increased.
The cause of these effects is that the summed weight
(n,m)-Condition takes a linear time, or O(n). But the
complexity of the combined (n,m)-Condition is
factorial, O(S (n ,m)),i.e., the search space of the
combined (n,m)-Condition can be calculated by
Equation (1).

Figure 2. The effect of search spaces is based on n.

Another experiment is proposed in this section, it
is proposed to evaluate the effect of search spaces that
are based on m. For experiments, the value of n, the
number of the possible system conditions, is fixed to be
16. The value of m, the number of the desired system
conditions, is varied from 2 to 16. In addition, with the
summed weight (n,m)-Condition, every condition’s
weight is fixed to be 1. Furthermore, we also give the
system conditions (the desired system conditions) that
satisfy the system limitation to appear at the end of the
system conditions. From the experimental results as
shown in Figure 3, we can also observe that the
summed weight (n,m)-Condition is more effective than
the (n,m)-Condition that based on data combinations.
Moreover, the experimental results of the summed
weight (n ,m)-Condition are stable,i.e., the search
space of every experimental result of the summed
weight (n,m)-Condition is only 16. Form the
experimental results that are shown in Figures 2 and 3,

we can conclude that only the number of possible
system conditions, n, can affect the search space of
the summed weight (n ,m)-Condition. Moreover, we
observe that the experimental results of the combined
(n,m)-Condition are in the form of bell curves or
normal distributions. That is when the number of the
desired system conditions, m, is increased in the
range between 2 and 8, the number of the combined
system conditions is also increased after that the
number of the combined system conditions have
decreased in the range between 8 and 16. This kind
of plot is a trend of data combinations.

Figure 3. The effect of search spaces is based on m.

3.3 Efficiency
This section is devoted to evaluating the efficiency

of the summed weight (n,m)-Condition by comparing it
with the (n,m)-Condition that based on data combinations.

The experimental results are shown in Figure 4.
They are proposed to evaluate the effect of execution
times that based on n. For experiments, the value of
m, the number of the desired system conditions, is
fixed to be 2. The value of n, the number of the
possible system conditions, is varied from 2 to 512.
In addition, with the summed weight (n ,m)-Condition,
every condition’s weight is fixed to be 1. Furthermore,
we give the system conditions (the desired system
conditions) that satisfy the system limitation to
appear at the end of the system conditions. From the
experimental results, we observe that when the
number of the possible system conditions, n, is
increased, both algorithms are using more execution
times or less efficiency. That is because the number
of the possible system conditions directly influences
the efficiency of both experimental algorithms.
Moreover, we observe that the summed weight (n,m)
-Condition is more efficient than the (n ,m)-Condition
that based on data combinations. Especially as the
number of possible system conditions is increased.
These experimental results are in accordance with
the complexity of them that is presented in Section 3.2
and 3.3. That is, the data construction complexity of
the summed weight (n,m)-Condition is only O(n) but
the data construction complexity of the combined
(n,m)-Condition is O(G (n,m)).

Digital Technologies Research andApplications | Volume 01 | Issue 02 | August 2022

94

Figure 4. The effect of execution times is based on m.

Another experiment is also proposed to
evaluate the efficiency of the summed weight (n,m)-
Condition and the (n ,m)-Condition that based on
data combinations. It is shown in Figure 5. For
experiments, the value of n, the number of the
possible system conditions, is fixed to be 16. The
value of m, the number of the desired system
conditions, is varied from 2 to 16. In addition, with
the summed weight (n ,m)-Condition, every
condition’s weight is fixed to be 1. Furthermore, we
also give the system conditions (the desired system
conditions) that satisfy the system limitation to
appear at the end of the system conditions. From the
experimental results as shown in Figure 5, we can
also observe that the summed weight (n,m)-Condition
is more efficient than the (n,m)-Condition that based
on data combinations. With the summed weight (n,m)-
Condition, we observe that its experimental results
are stable, or we can say that the number of the
desired system conditions, m, does not affect the
execution time, efficiency, of the summed weight
(n,m)-Condition. With the combined (n ,m)-Condition,
we observe that the execution time is decreased
when the number of the desired system conditions, m,
is increased. That is because when increasing the
number of the desired system conditions, m, the
number of program iterations for constructing the
system condition candidates is decreased.

Figure 5. The effect of execution times is based on n.

4. Conclusions
This work is devoted to proposing a simple,

effective, and efficient programming technique that is

used to specify m desired conditions from n possible
conditions. Aside from specifying the desired
conditions, the precedence of the conditions that are
available in the program, is also considered by the
proposed technique. To achieve these aims of the
proposed technique, the condition weights and their
summation are applied. That is, m desired conditions
from n possible conditions can be found when the
summation of the desired conditions is equal to or
greater than the referred condition summation. From
the experimental results, they indicate that the
proposed technique is more effective and efficient
than the compared technique that is based on data
combinations. That is, the complexity of search
spaces and data constructions of the proposed model
is only O(n) but the compared model has the
complexity of search spaces and data constructions to
be O(S (n ,m)) and O(G (n,m)) respectively.

Conflicts of Interest
There is no conflict of interest.

References
1. Chentsov, A., 2017. The program iteration method in a

game problem of guidance. Proceedings of the Steklov
Institute of Mathematics. 297(1), 43–61.

2. Heule, M.J., Kullmann, O., 2017. The science of brute
force. Communications of the ACM. 60(8), 70–79.

3. Itai, A., 2001. Generating permutations and combinations
in lexicographical order. Journal of the Brazilian
Computer Society. 7(3), 65–68.

4. Shen, M.K., 1962. On the generation of permutations and
combinations. BIT Numerical Mathematics. 2(4), 228–
231.

5. Karp, R.M., 1975. On the computational complexity of
combinatorial problems. Networks. 5(1), 45–68. DOI:
https://doi.org/10.1002/net.1975.5.1.45.

6. Laghari, A., Wu, K., Laghari, R., et al., 2021. A review
and state of art of Internet of Things (IoT). Archives of
Computational Methods in Engineering. DOI:
https://doi.org/10.1007/s11831-021-09622-6.

7. Suresh, P., Daniel, J.V., Parthasarathy, V., et al., 2014. A
state of the art review on the Internet of Things (IoT)
history, technology and fields of deployment.
2014International Conference on Science Engineering
and Management Research (ICSEMR). pp. 1–8.
DOI:https://doi.org/10.1109/ICSEMR.2014.7043637.

8. De Silva, L.C., Morikawa, C., Petra, I.M., 2012.State of
the art of smart homes. Engineering Applications of
Artificial Intelligence. 25(7), 1313–1321. Advanced
issues in Artificial Intelligence and Pattern Recognition
for Intelligent Surveillance System in Smart Home
Environment. DOI:
https://doi.org/10.1016/j.engappai.2012.05.002.

9. Papagiannidis, S., Marikyan, D., 2020. Smart offices: A
productivity and well-being perspective. International
Journal of Information Management. 51(C). DOI:
https://doi.org/10.1016/j.ijinfomgt.2019.10.012

10. Deng, T., Kanthawala, S., Meng, J., et al., 2019.
Measuring smartphone usage and task switching with log
tracking and self-reports. Mobile Media &
Communication. 7(1), 3–23. DOI:
https://doi.org/10.1177/2050157918761491.

Digital Technologies Research andApplications | Volume 01 | Issue 02 | August 2022

95

11. Wilmer, H.H., Sherman, L.E., Chein, J.M., 2017.
Smartphones and cognition: A review of research
exploring the links between mobile technology habits and
cognitive functioning. Frontiers in Psychology. 8. DOI:
https://doi.org/10.3389/fpsyg.2017.00605.

12. Al-Maroof, R.S., Alhumaid, K., Alhamad, A.Q., et al.,
2021. User acceptance of smart watch formedical
purposes: An empirical study. Future Internet. 13(5).
DOI: https://doi.org/10.3390/fi13050127.

13. Niknejad, N., Ismail, W.B., Mardani,A., et al., 2020. A
comprehensive overview of smart wearables: The state of
the art literature, recent advances, and future challenges.
Engineering Applications of Artificial Intelligence. 90,
103529. DOI:
https://doi.org/10.1016/j.engappai.2020.103529

14. Shore, J., Warden, S., 2021. The art of agile development.
O’Reilly Media, Inc.

15. Rigby, D.K., Sutherland, J., Noble,A., 2018. Agile at
scale. Harvard Business Review. 96(3), 88-96.

16. Abrahamsson, P., Salo, O., Ronkainen, J., et al., 2017.
Agile software development methods: Review and
analysis. DOI:
https://doi.org/10.48550/ARXIV.1709.08439.

17. Abrahamsson, P., Warsta, J., Siponen, M., et al., 2003.
New directions on agile methods: A comparative analysis.
25th International Conference on Software Engineering.
Proceedings. pp. 244-254. DOI:
https://doi.org/10.1109/ICSE.2003.1201204

18. Streule, T., Miserini, N., Bartlome, O., et al., 2016.
Implementation of scrum in the construction industry.
Procedia Engineering. Selected papers from Creative
Construction Conference 2016. 164, 269–276. DOI:
https://doi.org/10.1016/j.proeng.2016.11.619

19. Sharma, S., Hasteer, N., 2016. A comprehensive study on
state of scrum development. 2016 International
Conference on Computing, Communication and
Automation (ICCCA). pp. 867-872. DOI:
https://doi.org/10.1109/CCAA.2016.7813837.

20. Kniberg, H., 2015. Scrum and XP from the Trenches.
Lulu.com.

21. Chari, K., Agrawal, M., 2018. Impact of incorrect and
new requirements on waterfall software project outcomes.
Empirical Software Engineering. 23(1), 165- 185.

22. Bassil, Y., 2012.A simulation model for the waterfall
software development lifecycle.
DOI:https://doi.org/10.48550/ARXIV.1205.6904.

23. Chrismanto, A.R., Santoso, H., Wibowo, A., et al., 2019.
Developing agriculture land mapping using rapid
application development (rad): A case study from
Indonesia. International Journal of Advanced Computer
Science and Applications (IJACSA). 10(10).

24. Martin, J., 1991. Rapid application development.
Macmillan Publishing Co., Inc.

25. Budoya, C., Kissaka, M., Mtebe, J., 2019. Instructional
design enabled agile method using addie modeland
feature driven development method. International Journal
of Education and Development using ICT. 15(1).

26. Nawaz, Z., Aftab, S., Anwer, F., 2017. Simplified fdd
process model. International Journal of Modern
Education & Computer Science. 9(9).

27. Amoroso, E., 2018. Recent progress in software security.
IEEE Software. 35(2), 11–13.

28. Barnum, S., McGraw, G., 2005. Knowledge for software
security. IEEE Security & Privacy. 3(2), 74–78.

29. McGraw, G., 2004. Software security. IEEE Security &
Privacy. 2(2), 80–83.

30. Riyana, S., Riyana, N., Nanthachumphu, S., 2017.
Enhanced (k, e)-anonymous for categorical data.

Proceedings of the 6th International Conference on
Software and Computer Applications. pp. 62–67.

31. Riyana, S., Nanthachumphu, S., Riyana, N., 2020.
Achieving privacy preservation constraints in missing-
value datasets. SN Computer Science. 1(4), 1–10.

32. Riyana, S., 2021. (lp1, . . . ,lpn)-privacy: privacy
preservation models for numerical quasi-identifiers and
multiple sensitive attributes. Journal of Ambient
Intelligence and Humanized Computing. pp. 1–17.

33. Riyana, N., Riyana, S., Nanthachumphu, S., et al., 2020.
Privacy violation issues in republication of modification
datasets. International Conference on Intelligent
Computing & Optimization. pp. 938-953. Springer, Cham.

34. Riyana, S., Riyana, N., 2021. A privacy preservation
model for rfid data collections is highly secure and more
efficient than lkc-privacy. The 12th International
Conference on Advances in Information Technology. pp.
1–11.

35. Duran, R., Sorva, J., Leite, S., 2018. Towards an
analysis of program complexity from a cognitive
perspective. Proceedings of the 2018 ACM Conference
on International Computing Education Research, ICER.
Association for Computing Machinery, New York, NY,
USA. 18, 21–30. DOI:
https://doi.org/10.1145/3230977.3230986

36. Wolf-Branigin, M., 2013. Using complexity theory for
research and program evaluation. Oxford University Press.

37. Daly, D., Brown, W., Ingo, H., et al., 2020. The use of
change point detection to identify software performance
regressions in a continuous integration system. ICPE.
Association for Computing Machinery, New York, NY,
USA. 20, 67–75. DOI:
https://doi.org/10.1145/3358960.3375791

38. Aleti, A., Trubiani, C., van Hoorn, A., et al., 2018. An
efficient method for uncertainty propagation in robust
software performance estimation. Journal of Systems and
Software. 138, 222–235. DOI:
https://doi.org/10.1016/j.jss.2018.01.010

39. Grechanik, M., Luo,Q., Poshyvanyk, D., et al., 2016.
Enhancing rules for cloud resource provisioning via
learned software performance models. ICPE. Association
for Computing Machinery, New York, NY, USA. 16,
209–214. DOI: https://doi.org/10.1145/2851553.2851568

40. Catuogno, L., Galdi, C., Pasquino, N., 2018. An effective
methodology for measuring software resource usage.
IEEE Transactions on Instrumentation and Measurement.
67(10), 2487–2494. DOI:
https://doi.org/10.1109/TIM.2018.2815431.

Copyright © 2022 by the author(s). Published by UK Scientific
Publishing Limited. This is an open access article under the
Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

	1. Introduction
	Related Work
	Currently, the various smart technologies (e.g., c
	2.3. (n, m)-Conditions Based on the Summation of t

	3. Results and Discussion
	3.1. Experimental Setup
	All experiments are proposed in this work, they ar
	3.2. Effectiveness
	3.3 Efficiency

	4. Conclusions
	Conflicts of Interest
	References

